四川省广安市2025届数学高一上期末考试试题含解析_第1页
四川省广安市2025届数学高一上期末考试试题含解析_第2页
四川省广安市2025届数学高一上期末考试试题含解析_第3页
四川省广安市2025届数学高一上期末考试试题含解析_第4页
四川省广安市2025届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广安市2025届数学高一上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若方程有四个不同的解,,,,且,则的取值范围是()A. B.C. D.2.已知正弦函数f(x)的图像过点,则的值为()A.2 B.C. D.13.若函数为上的奇函数,则实数的值为()A. B.C.1 D.24.已知,,,则A. B.C. D.5.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.6.如果,那么下列不等式中,一定成立的是()A. B.C. D.7.已知,,,则,,三者的大小关系是()A. B.C. D.8.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且9.已知向量,且,则实数=A B.0C.3 D.10.已知向量,满足,,且与的夹角为,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算的结果是_____________12.已知,则的最大值为_______13.若函数在区间[2,3]上的最大值比最小值大,则__________.14.在中,已知是上的点,且,设,,则=________.(用,表示)15.已知向量,,若,则的值为________.16.若,则___________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式18.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由19.求下列各式的值(1);(2)20.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.21.已知函数f(x)=x2-ax+2(1)若f(x)≤-4的解集为[2,b],求实数a,b的值;(2)当时,若关于x的不等式f(x)≥1-x2恒成立,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据图象可得:,,,.,则.令,,,而函数.即可求解.【详解】解:函数,的图象如下:根据图象可得:若方程有四个不同的解,,,,且,则,,,.,,则.令,,,而函数在,单调递增.所以,则.故选:D.【点睛】本题考查函数的图象与性质,考查函数与方程思想、转化与化归思想、数形结合思想,考查运算求解能力,求解时注意借助图象分析问题,属于中档题.2、C【解析】由题意结合诱导公式有:.本题选择C选项.3、A【解析】根据奇函数的性质,当定义域中能取到零时,有,可求得答案.【详解】函数为上的奇函数,故,得,当时,满足,即此时为奇函数,故,故选:A4、D【解析】容易看出,,从而可得出a,b,c的大小关系.【详解】,,;.故选D.【点睛】考查指数函数和对数函数的单调性,以及增函数和减函数的定义,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.5、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.6、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.7、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C8、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..9、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.10、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】根据对数的运算公式,即可求解.【详解】根据对数的运算公式,可得.故答案为:.12、【解析】消元,转化为求二次函数在闭区间上的最值【详解】,,时,取到最大值,故答案为:13、【解析】函数在上单调递增,∴解得:故答案为14、+##【解析】根据平面向量的线性运算可得答案.【详解】因为,所以,所以可解得故答案为:15、【解析】因为,,,所以,解得,故答案为:16、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为上的奇函数;证明见解析(2)答案不唯一,具体见解析【解析】(1)利用函数奇偶性的定义判断即可,(2)由题意可得,得,然后分和解不等式即可【小问1详解】函数为奇函数证明:函数的定义域为,,即对任意恒成立.所以为上的奇函数【小问2详解】由,得,即因为,,且,所以且由,即当,即时,解得当,即时,解得综上,当时,不等式的解集为;当时,不等式的解集为18、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.19、(1);(2).【解析】(1)首先利用公式降幂,然后将写为将化为即可得解;(2)将记为,记为,再用公式展开,然后化简求值.【详解】(1)原式=(2)原式=故答案为:2;-1【点睛】本题考查三角函数诱导公式,二倍角公式,两角和与差的余弦公式,属于基础题.20、(1)(2)的值是,最小值是,无最大值【解析】(1)根据二次函数的对称轴公式,即可得到结果;(2)由,可求出的值,再根据二次函数的开口和对称轴,即可求出最值.【小问1详解】解:因为二次函数,所以对称轴【小问2详解】解:因为,所以.所以.所以.因为,所以开口向上,又对称轴为,所以最小值为,无最大值.21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论