




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1§6.1分类加法计数原理与分步乘法计数原理第1课时计数原理及其简单应用课时对点练1.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选1本阅读,则不同的选法共有()A.24种B.9种C.3种D.26种〖答案〗B〖解析〗不同的杂志本数为4+3+2=9,从其中任选1本阅读,共有9种选法.2.给一些书编号,准备用3个字符,其中首字符用A,B,后两个字符用a,b,c(允许重复),则不同编号的书共有()A.8本 B.9本C.12本 D.18本〖答案〗D〖解析〗需分三步完成:第一步首字符有2种编法;第二步,第二个字符有3种编法;第三步,第三个字符有3种编法,故由分步乘法计数原理知不同编号的书共有2×3×3=18(本).3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10〖答案〗C〖解析〗分两类情况讨论:第一类,直线a分别与直线b上的8个点可以确定8个不同的平面;第二类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.4.十字路口来往的车辆,如果不允许回头,则不同的行车路线有()A.24种 B.16种C.12种 D.10种〖答案〗C〖解析〗完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线,故选C.5.从集合{0,1,2,3,4,5,6}中任取两数a,b组成复数a+bi,其中虚数有()A.30个 B.42个C.36个 D.35个〖答案〗B〖解析〗要完成这件事可分两步,第一步确定b(b≠0),有6种方法,第二步确定a,有7种方法,故由分步乘法计数原理知,共有6×7=42(个)虚数.6.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序实数对(a,b)的个数为()A.14B.13C.12D.10〖答案〗B〖解析〗由已知得ab≤1.当a=-1时,b=-1,0,1,2,有4种可能;当a=0时,b=-1,0,1,2,有4种可能;当a=1时,b=-1,0,1,有3种可能;当a=2时,b=-1,0,有2种可能.∴共有(a,b)的个数为4+4+3+2=13.7.某小区有4个门,规定只能从主门进,从任一个门出,则共有不同走法________种.〖答案〗4〖解析〗由分步乘法计数原理得共有1×4=4(种)走法.8.用1,2,3这3个数字可写出没有重复数字的整数有________个.〖答案〗15〖解析〗分三类:第一类为一位整数,有3个;第二类为两位整数,有12,13,21,23,31,32,共6个;第三类为三位整数,有123,132,213,231,312,321,共6个.∴可写出没有重复数字的整数有3+6+6=15(个).9.有一项活动,需从3位教师、8名男同学和5名女同学中选人参加.(1)若只需1人参加,则有多少种不同的选法?(2)若需教师、男同学、女同学各1人参加,则有多少种不同的选法?解(1)选1人,可分3类:第1类,从教师中选1人,有3种不同的选法;第2类,从男同学中选1人,有8种不同的选法;第3类,从女同学中选1人,有5种不同的选法.共有3+8+5=16(种)不同的选法.(2)选教师、男同学、女同学各1人,分3步进行:第1步,选教师,有3种不同的选法;第2步,选男同学,有8种不同的选法;第3步,选女同学,有5种不同的选法.共有3×8×5=120(种)不同的选法.10.用0,1,2,3,4,5这6个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,求上述四位数中“渐降数”的个数.解分三类:第一类,千位数字为3时,要使四位数为“渐降数”,则四位数只有3210,共1个;第二类,千位数字为4时,“渐降数”有4321,4320,4310,4210,共4个;第三类,千位数字为5时,“渐降数”有5432,5431,5430,5421,5420,5410,5321,5320,5310,5210,共10个.由分类加法计数原理,得共有1+4+10=15(个)“渐降数”.11.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有()A.27种 B.36种C.54种 D.81种〖答案〗C〖解析〗小张的报名方法有2种,其他3位同学各有3种,根据分步乘法计数原理,共有2×3×3×3=54(种)不同的报名方法.12.计划在4个体育馆举办排球、篮球、足球3个项目的比赛,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2项的安排方案共有()A.24种 B.36种C.42种 D.60种〖答案〗D〖解析〗把3个项目分配到4个体育馆,所有方案共有4×4×4=64(种),其中,3个项目被分配到同一体育馆进行有4种方法,故满足条件的分配方案有64-4=60(种).13.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条 B.20条C.25条 D.10条〖答案〗A〖解析〗第一步取A的值,有5种取法,第二步取B的值,有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).14.(多选)已知集合A={-1,2,3,4},m,n∈A,则对于方程eq\f(x2,m)+eq\f(y2,n)=1的说法正确的是()A.可表示3个不同的圆B.可表示6个不同的椭圆C.可表示3个不同的双曲线D.表示焦点位于x轴上的椭圆有3个〖答案〗ABD〖解析〗当m=n>0时,方程eq\f(x2,m)+eq\f(y2,n)=1表示圆,故有3个,选项A正确;当m≠n且m,n>0时,方程eq\f(x2,m)+eq\f(y2,n)=1表示椭圆,焦点在x,y轴上的椭圆分别有3个,故有3×2=6(个),选项B正确,D正确;当mn<0时,方程eq\f(x2,m)+eq\f(y2,n)=1表示双曲线,故有3×1+1×3=6个,选项C错误.15.如图所示,小圆圈表示网络的结点,结点之间的线段表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为()A.26 B.24C.20 D.19〖答案〗D〖解析〗因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从A向B传递有四种方法:12→5→3,12→6→4,12→6→7,12→8→6,故单位时间内传递的最大信息量为四条不同网线上传递的最大信息量的和:3+4+6+6=19.16.用1,2,3,4四个数字(可重复)排成三位数,并把这些三位数由小到大排成一个数列{an}.(1)写出这个数列的前11项;(2)这个数列共有多少项?(3)若an=341,求n.解(1)111,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园防火防灾宣传合作合同(2篇)
- 《幼儿舞蹈创编2》-项目三《造型练习》教案
- 2025新车买卖的合同
- 2025年出口购销合同范本示例
- 2025汽车租赁合同协议书模板
- 2025版工业制造合同范本
- 2025烘焙技术合作协议合同
- 亚急性心内膜炎的临床护理
- 新北师大五年级数学上册分数的再认识教学设计
- 视像不等的临床护理
- 小学心理健康教育《在合作中成长》教学课件
- 房室折返性心动过速课件
- 直饮水工程施工组织设计
- 2022年山东中烟工业有限责任公司滕州卷烟厂招聘笔试题库及答案解析
- 急救技术气道开放技术课件
- 监理整改回复单(模板)
- 招贴设计 课件完整版
- 杭州市主城区声环境功能区划分图
- 6G项目实施方案参考模板
- 高层建筑无地下室倾覆及滑移计算
- 广东省东莞市第二人民法院
评论
0/150
提交评论