




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省铁岭市昌图县2023-2024学年中考数学模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.2.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣33.已知x=2是关于x的一元二次方程x2﹣x﹣2a=0的一个解,则a的值为()A.0 B.﹣1 C.1 D.24.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D5.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.6.不等式组的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<37.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)8.﹣22×3的结果是()A.﹣5 B.﹣12 C.﹣6 D.129.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近10.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.3二、填空题(共7小题,每小题3分,满分21分)11.将数字37000000用科学记数法表示为_____.12.将一副三角板如图放置,若,则的大小为______.13.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.14.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=,=,那么等于__(结果用、的线性组合表示).15.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.16.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.17.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.三、解答题(共7小题,满分69分)18.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).19.(5分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)20.(8分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?21.(10分)如图,在中,是的中点,过点的直线交于点,交的平行线于点,交于点,连接、.求证:;请你判断与的大小关系,并说明理由.22.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题:
表中___;____请计算扇形统计图中B组对应扇形的圆心角的度数;
已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.23.(12分)一辆汽车,新车购买价30万元,第一年使用后折旧,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为万元,求这辆车第二、三年的年折旧率.24.(14分)解方程:3x2﹣2x﹣2=1.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/6="1/"3.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m"/n.2、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.3、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本题选C.【考点】一元二次方程的解;一元二次方程的定义.4、B【解析】
,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】,,,,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.5、A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.6、B【解析】
根据解不等式组的方法可以求得原不等式组的解集.【详解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式组的解集是x>1.故选B.【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.7、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2,则OC′=3,故C′的坐标是(3,0).故选B.考点:坐标与图形变化-旋转.8、B【解析】
先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.9、D【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B.“抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C.“彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.10、C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.二、填空题(共7小题,每小题3分,满分21分)11、3.7×107【解析】
根据科学记数法即可得到答案.【详解】数字37000000用科学记数法表示为3.7×107.【点睛】本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.12、160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为160°.考点:余角和补角.13、a<2且a≠1【解析】
将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解为正实数,∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案为:a<2且a≠1.【点睛】分式方程的解.14、【解析】
根据三角形法则求出即可解决问题;【详解】如图,∵=,=,∴=+=-,∵BD=BC,∴=.故答案为.【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.15、1.【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.16、y=160﹣80x(0≤x≤2)【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.【详解】解:∵汽车的速度是平均每小时80千米,∴它行驶x小时走过的路程是80x,∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.17、4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.三、解答题(共7小题,满分69分)18、(1)见解析;(2)75﹣a.【解析】
(1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案【详解】(1)证明:连接DC,∵BC是⊙O直径,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC为直径,∴AC切⊙O于C,∵过点D作⊙O的切线DE交AC于点E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:连接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的长度是a,∴扇形DOC的面积是×a×=a,∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.19、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20、(1);(2);(3)最多获利4480元.【解析】
(1)销售量y为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.21、(1)证明见解析;(2)证明见解析.【解析】
(1)利用平行线的性质和中点的定义得到,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论