人教版四年级上册数学思维训练讲义-第十三讲速算与巧算(二)(含答案)_第1页
人教版四年级上册数学思维训练讲义-第十三讲速算与巧算(二)(含答案)_第2页
人教版四年级上册数学思维训练讲义-第十三讲速算与巧算(二)(含答案)_第3页
人教版四年级上册数学思维训练讲义-第十三讲速算与巧算(二)(含答案)_第4页
人教版四年级上册数学思维训练讲义-第十三讲速算与巧算(二)(含答案)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十三讲速算与巧算(二)乘法分配律第一部分:趣味数学乘法分配律老师发现一个学生在作业本上的姓名是:木(1+2+3)。老师问:"这是谁的作业本?"一个学生站起来:"是我的!"老师:"你叫什么名字?"学生:"木林森!"老师:"那你怎么把名字写成这样呢?"学生:"我用的是乘法分配律!"第二部分:奥数小练对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。【例题1】计算236×37×27【思路导航】在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。236×37×27=236×(37×3×9)=236×(111×9)=236×999=236×(1000-1)=236000-236=235764练习1:计算下面各题:1.132×37×272.315×77×13【例题2】计算333×334+999×222【思路导航】表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。333×334+999×222=333×334+333×(3×222)=333×(334+666)=333×1000=333000练习2:计算下面各题:9999×2222+3333×33342.37×18+27×423.46×28+24×63【例题3】:不用笔算,请你指出下面哪个得数大。163×167164×166【思路导航】仔细观察可以发现,第二个算式中的两个因数分别与第一个算式中的两个因数相差1,根据这个特点,可以把题中的数据作适当变形,再利用乘法分配律,然后进行比较就方便了。163×167164×166=163×(166+1)=(163+1)×166=163×166+163=163×166+166所以,163×167<164×166练习3:1.不用笔算,比较下面每道题中两个积的大小。242×248与243×2472.计算:8353×363-8354×362【例题4】计算158×61÷79×3【思路导航】在乘除法混合运算中,如果算式中没有括号,计算时可以根据运算定律和性质调换因数或除数的位置。158×61÷79×3=158÷79×61×3=2×61×3=366练习4:计算下面各题1.238×36÷119×52.624×48÷312÷83.138×27÷69×504.406×312÷104÷203【例题5】计算下面各题。(1)123×96÷16(2)200÷(25÷4)【思路导航】这两道题都是乘除混合运算式题,我们可以根据这两道题的特点,采用加括号或去括号的方法,使计算简便。其方法与加减混合运算添、去括号的方法类似,可以概括为:括号前是乘号,添、去括号不变号;括号前是除号,添、去括号要变号。(1)123×96÷16(2)200÷(25÷4)=123×(96÷16)=200÷25×4=123×6=8×4=738=32练习5:计算下面各题1.612×366÷1832.1000÷(125÷4)3.(13×8×5×6)÷(4×5×6)4.241×345÷678÷345×(678÷241)第三部分:数学史话毕达哥拉斯定理毕达哥拉斯定理欧几里得所著《几何原本》中的一个证明--被广泛认为是历史上最具影响力的教科书在进入知识可以向全世界传播的现代社会以前,有记录的新数学发现仅仅在很少几个地区重见天日。目前最古老的数学文本是《普林顿322》(古巴比伦,约公元前1900年),《莱因德数学纸草书》(古埃及,约公元前2000年-1800年),以及《莫斯科数学纸草书》(古埃及,约公元前1890年)。以上这些文本都涉及到了如今被称为毕达哥拉斯定理的概念,后者可能是继简单算术和几何后,最古老和最广泛传播的数学发现。在公元前6世纪后,毕达哥拉斯将数学作为一门实证的学科进行研究,他创造了古希腊语单词μάθημα(mathema),意为“(被人们学习的)知识学问”。希腊数学家在相当大的程度上改进了这些数学方法(特别引入了演绎推理和严谨的数学证明),并扩大了数学的主题。中国数学做了早期贡献,包括引入了位值制系统。如今大行于世的印度-阿拉伯数字系统和运算方法,很可能是在公元后1000年的印度逐渐演化,并被伊斯兰数学家通过花拉子米的著作将其传到了西方。伊斯兰数学则将以上这些文明的数学做了进一步的发展贡献。许多古希腊和伊斯兰数学著作随后被翻译成了拉丁文,引领了中世纪欧洲更深入的数学发展。从16世纪文艺复兴时期的意大利开始,算术、初等代数及三角学等初等数学已大体完备。17世纪变数概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。从古代到中世纪,数学发展的历史时期都伴随着数个世纪的停滞,但从16世纪以来,新的数学发展伴随新的科学发展,让数学不断加速大步前进,直至今日。参考答案:练习1:1.1318682.315315练习2:1.333300002.18003.2800练习3:1.<2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论