




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2024-2025学年贵州省遵义市高一(上)联考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。1.下列各组对象能构成集合的是(
)A.中国著名的数学家 B.高一(2)班个子比较高的学生
C.不大于5的自然数 D.约等于3的实数2.命题“所有平行四边形的对角线互相平分”的否定是(
)A.所有的平行四边形的对角线不互相平分
B.对角线不互相平分的四边形不是平行四边形
C.存在一个平行四边形的对角线互相平分
D.存在一个平行四边形的对角线不互相平分3.已知集合A={1,2,3,5},B={2,3,4,6},则A∪B=(
)A.{1,2,3,4,5,6} B.{1,5} C.{2,3} D.{4,6)4.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的(
)A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件5.如图,书架宽84cm,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm,每本语文书厚1.1cm,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为(
)
A.38 B.39 C.41 D.426.已知集合A={(x,y)|x2+y2=4,x∈Z,y∈Z}A.7 B.8 C.15 D.167.已知p是q的充分不必要条件,q是s的充要条件,s是r的充分不必要条件,r是q的必要不充分条件,则p是s的(
)A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有(
)A.5名 B.4名 C.3名 D.2名二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。9.已知命题p:有些三角形是轴对称图形,命题q:梯形的对角线相等,则(
)A.p是存在量词命题 B.q是全称量词命题 C.p是假命题 D.¬q是真命题10.已知函数y=ax2+bx+c的部分图象如图所示,则(
)
A.abc<0
B.b+c>0
C.2a+b+c>0
D.关于x的方程cx211.若S是含有n个元素的数集,则称S为n数集S.n数集S中含有m(m≤n)个元素的子集,称为S的m子集.若在n数集S的任何一个t(4≤t≤n)子集中,存在4个不同的数a,b,c,d,使得a+b=c+d,则称该S的t子集为S的等和子集.下列结论正确的是(
)A.3数集A有6个非空真子集
B.4数集B有6个2子集
C.若集合C={1,2,3,4,6},则C的等和子集有2个
D.若集合D={1,2,3,4,6,13,20,40},则D的等和子集有24个三、填空题:本题共3小题,每小题5分,共15分。12.若“∀x∈[−2,1],2x+a≥0”是真命题,则a的最小值是______.13.已知a∈R,b∈R,集合{a+b,a,2}={a2,2,0},则(a−b)14.已知x=2y=1是方程组a1x+b1四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。15.(本小题13分)
已知p:x<a2−2a−1,q:x<a2+5.
(1)若p是q的充要条件,求a的值;
(2)若p16.(本小题15分)
已知集合A={x|x−2>1},B={x|a+1<x<3a+5}.
(1)当a=1时,求(∁RA)∩B;
(2)若A∩B=B,求17.(本小题15分)
已知p:关于x的方程x2−2ax+a2+a−2=0有实根,q:关于x的方程x−2a+5=0的解在[−3,9]内.
(1)若¬q是真命题,求a的取值范围;
(2)若p和18.(本小题17分)
已知二次函数y=x2+4x+m的图象与x轴交于A(x1,0),B(x2,0)两点.
(1)当m=−5时,求关于x的方程x2+4x+m=0的解;
(2)若x19.(本小题17分)
已知集合A={a1,a2,a3,⋯,an}(0≤a1<a2<a3<⋯<an,n≥2),若对任意的整数s,t(1≤t≤s≤n),as+at和as−at中至少有一个是集合A的元素,则称集合A具有性质M.
(1)判断集合A={0,1,7,8}参考答案1.C
2.D
3.A
4.B
5.D
6.C
7.A
8.B
9.ABD
10.BD
11.ABD
12.4
13.8
14.x=4y=−15.解:对于p:x<a2−2a−1,q:x<a2+5,
(1)若p是q的充要条件,则两个不等式的解集相同,即a2−2a−1=a2+5,解得a=−3.
(2)若p是q的充分不必要条件,
则集合{x|x<a2−2a−1}16.解:(1)∵A={x|x−2>1}=(3,+∞),
∴∁RA=(−∞,3],
又a=1,∴B={x|a+1<x<3a+5}=(2,8),
∴(∁RA)∩B=(2,3];
(2)∵A∩B=B,∴B⊆A,
当a+1≥3a+5,即a≤−2时,B=⌀,符合题意;
当B≠⌀时,由B⊆A,可得a+1<3a+5a+1≥3,解得a≥2.17.解:(1)根据题意,对于命题q:关于x的方程x−2a+5=0的解在[−3,9]内,
x−2a+5=0⇒x=−5+2a,
若关于x的方程x−2a+5=0的解在[−3,9]内,则有−3≤−5+2a≤9,解得1≤a≤7,
又由命题¬q是真命题,则命题q是假命题,则有a<1或7<a,
则实数a的取值范围是(−∞,1)∪(7,+∞);
(2)由(1)知,命题q是真命题,即q:1≤a≤7,
若p为真命题,即关于x的方程x2−2ax+a2+a−2=0有实数根,
因此Δ=4a2−4(a2+a−2)≥0,解得a≤2,
则p为假命题时,a>2.
当p真q假时,则a≤2a<1或a>7,解得a<1;
当p假q真时,则a>218.解:(1)已知二次函数y=x2+4x+m的图象与x轴交于A(x1,0),B(x2,0)两点,
当m=−5时,方程x2+4x−5=0,
即(x+5)(x−1)=0,则x=1或x=−5.
即方程的解为1,−5.
(2)由题意,x2+4x+m=0有两个不等根x1,x2,
所以x1+x2=−4,x1⋅x2=m,
由x12+x22=(x1+x2)2−2x1⋅x2=16−2m=12,
得m=2.
此时,m=2满足Δ=16−4m>0,
故所求m19.解:(1)对于集合A={0,1,7,8},
所以0+1=1∈A,0+7=7∈A,0+8=8∈A,1+7=8∈A,8−1=7∈A,8−7=1∈A,
又因为当t=s时,as−at=0也是集合A的元素,
所以集合A={0,1,7,8}具有性质M.
(2)证明:令s=t=12,
因为集合B={a1,a2,a3,⋯,a12}具有性质M,
所以a12+a12和a12−a12中至少有一个是集合B的元素.
因为a12>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制定作业许可管理制度
- 外汇国外平台管理制度
- 外来单位安全管理制度
- 巡检计划实施管理制度
- 工厂供电安全管理制度
- 国学书法教室管理制度
- 北京医保制度管理制度
- 台州工地扬尘管理制度
- 行政组织理论与绩效管理的结合试题及答案
- 公司来客招待管理制度
- 《多样的中国民间美术》课件 2024-2025学年人美版(2024)初中美术七年级下册
- 危大工程安全管理档案(2019版)
- 撤销限高和失信申请书
- DB33-T 2383-2021 《公路工程强力搅拌就地固化设计与施工技术规范》
- 车床工安全生产职责规章制度
- 2025年庆六一儿童节校长致辞(2篇)
- 房屋市政工程生产安全重大事故隐患排查表(2024版)
- 人教版小学数学五年级下册全册导学案
- 油库设备维护规范
- 国企求职指南培训
- 职业道德与法治综合练习2024-2025学年中职高教版
评论
0/150
提交评论