吉林省长春市榆树市一中2025届高三下学期联考数学试题含解析_第1页
吉林省长春市榆树市一中2025届高三下学期联考数学试题含解析_第2页
吉林省长春市榆树市一中2025届高三下学期联考数学试题含解析_第3页
吉林省长春市榆树市一中2025届高三下学期联考数学试题含解析_第4页
吉林省长春市榆树市一中2025届高三下学期联考数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市榆树市一中2025届高三下学期联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是()A. B.C. D.2.在中,角、、所对的边分别为、、,若,则()A. B. C. D.3.要得到函数的图象,只需将函数的图象上所有点的()A.横坐标缩短到原来的(纵坐标不变),再向左平移个单位长度B.横坐标缩短到原来的(纵坐标不变),再向右平移个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位长度4.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线5.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填()A. B. C. D.6.函数的图象大致是()A. B.C. D.7.抛物线的焦点为,准线为,,是抛物线上的两个动点,且满足,设线段的中点在上的投影为,则的最大值是()A. B. C. D.8.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为()A. B. C. D.9.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是()A.12个月的PMI值不低于50%的频率为B.12个月的PMI值的平均值低于50%C.12个月的PMI值的众数为49.4%D.12个月的PMI值的中位数为50.3%10.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.14.的展开式中的系数为__________(用具体数据作答).15.若正实数x,y,满足x+2y=5,则x216.抛物线上到其焦点距离为5的点有_______个.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.18.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.19.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中20.(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)21.(12分)已知六面体如图所示,平面,,,,,,是棱上的点,且满足.(1)求证:直线平面;(2)求二面角的正弦值.22.(10分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,,点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由题可得出的坐标为,再利用点对称的性质,即可求出和.【详解】根据题意,,所以点的坐标为,又,所以.故选:A.【点睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.2、D【解析】

利用余弦定理角化边整理可得结果.【详解】由余弦定理得:,整理可得:,.故选:.【点睛】本题考查余弦定理边角互化的应用,属于基础题.3、C【解析】

根据三角函数图像的变换与参数之间的关系,即可容易求得.【详解】为得到,将横坐标伸长到原来的2倍(纵坐标不变),故可得;再将向左平移个单位长度,故可得.故选:C.【点睛】本题考查三角函数图像的平移,涉及诱导公式的使用,属基础题.4、C【解析】

充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.5、C【解析】

模拟执行程序框图,即可容易求得结果.【详解】运行该程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此时要输出的值为99.此时.故选:C.【点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.6、C【解析】

根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.7、B【解析】

试题分析:设在直线上的投影分别是,则,,又是中点,所以,则,在中,所以,即,所以,故选B.考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系.8、A【解析】

利用计算即可,其中表示事件A所包含的基本事件个数,为基本事件总数.【详解】从7本作业本中任取两本共有种不同的结果,其中,小明取到的均是自己的作业本有种不同结果,由古典概型的概率计算公式,小明取到的均是自己的作业本的概率为.故选:A.【点睛】本题考查古典概型的概率计算问题,考查学生的基本运算能力,是一道基础题.9、D【解析】

根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【点睛】本题考查频率、平均值的估计、众数、中位数计算,考查数据处理能力,属于基础题.10、A【解析】

本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.11、A【解析】

计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.12、A【解析】

先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.14、【解析】

利用二项展开式的通项公式可求的系数.【详解】的展开式的通项公式为,令,故,故的系数为.故答案为:.【点睛】本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.15、8【解析】

分析:将题中的式子进行整理,将x+1当做一个整体,之后应用已知两个正数的整式形式和为定值,求分式形式和的最值的问题的求解方法,即可求得结果.详解:x2-3x+1+2点睛:该题属于应用基本不等式求最值的问题,解决该题的关键是需要对式子进行化简,转化,利用整体思维,最后注意此类问题的求解方法-------相乘,即可得结果.16、2【解析】

设符合条件的点,由抛物线的定义可得,即可求解.【详解】设符合条件的点,则,所以符合条件的点有2个.故答案为:2【点睛】本题考查抛物线的定义的应用,考查抛物线的焦半径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.【详解】(1)证明:在等腰梯形,,易得在中,,则有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,设,,,,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,设平面的法向量为,由得,取,得,,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.18、(1).(2).【解析】分析:(1)直接建立空间直角坐标系,然后求出面的法向量和已知线的向量,再结合向量的夹角公式求解即可;(2)先分别得出两个面的法向量,然后根据向量交角公式求解即可.详解:()∵是矩形,∴,又∵平面,∴,,即,,两两垂直,∴以为原点,,,分别为轴,轴,轴建立如图空间直角坐标系,由,,得,,,,,,则,,,设平面的一个法向量为,则,即,令,得,,∴,∴,故与平面所成角的正弦值为.()由()可得,设平面的一个法向量为,则,即,令,得,,∴,∴,故二面角的余弦值为.点睛:考查空间立体几何的线面角,二面角问题,一般直接建立坐标系,结合向量夹角公式求解即可,但要注意坐标的正确性,坐标错则结果必错,务必细心,属于中档题.19、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】

根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解:解得.所以,该城市驾驶员交通安全意识强的概率根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计所以有的把握认为交通安全意识与性别有关.由题意可知分数在,的分别为名和名,所以分层抽取的人数分别为名和名,设的为,,的为,,,,则基本事件空间为,,,,,,,,,,,,,,共种,设至少有人得分低于分的事件为,则事件包含的基本事件有,,,,,,,,共种所以.【点睛】本题考查独立性检验应用问题,也考查了列举法求古典概型的概率问题,属于中档题.20、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】

(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论