江苏省宿迁市沭阳县2025届高三第二次联考数学试卷含解析_第1页
江苏省宿迁市沭阳县2025届高三第二次联考数学试卷含解析_第2页
江苏省宿迁市沭阳县2025届高三第二次联考数学试卷含解析_第3页
江苏省宿迁市沭阳县2025届高三第二次联考数学试卷含解析_第4页
江苏省宿迁市沭阳县2025届高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省宿迁市沭阳县2025届高三第二次联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.2.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.3.设i为虚数单位,若复数,则复数z等于()A. B. C. D.04.已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是()A. B. C. D.5.已知复数,则对应的点在复平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函数.下列命题:①函数的图象关于原点对称;②函数是周期函数;③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是()A.①④ B.②③ C.①③④ D.①②④7.已知函数,则的值等于()A.2018 B.1009 C.1010 D.20208.已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是A. B. C. D.9.如图所示的程序框图输出的是126,则①应为()A. B. C. D.10.已知集合,集合,那么等于()A. B. C. D.11.命题:的否定为A. B.C. D.12.已知角的终边经过点,则A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,点P在直线上,过点P作圆C:的一条切线,切点为T.若,则的长是______.14.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.15.如图是一个几何体的三视图,若它的体积是,则_________,该几何体的表面积为_________.16.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。18.(12分)在中,,,.求边上的高.①,②,③,这三个条件中任选一个,补充在上面问题中并作答.19.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.20.(12分)某贫困地区几个丘陵的外围有两条相互垂直的直线型公路,以及铁路线上的一条应开凿的直线穿山隧道,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,以所在的直线分别为轴,轴,建立平面直角坐标系,如图所示,山区边界曲线为,设公路与曲线相切于点,的横坐标为.(1)当为何值时,公路的长度最短?求出最短长度;(2)当公路的长度最短时,设公路交轴,轴分别为,两点,并测得四边形中,,,千米,千米,求应开凿的隧道的长度.21.(12分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.22.(10分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上8:30之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期1日2日3日4日5日6日7日8日9日10日元件A个数91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A个数12241515151215151524从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.(Ⅰ)求X的分布列与数学期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.2、D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.3、B【解析】

根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.4、D【解析】

设双曲线的左焦点为,连接,,,设,则,,,和中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为,连接,,,设,则,,,,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5、A【解析】

利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.6、A【解析】

根据奇偶性的定义可判断出①正确;由周期函数特点知②错误;函数定义域为,最值点即为极值点,由知③错误;令,在和两种情况下知均无零点,知④正确.【详解】由题意得:定义域为,,为奇函数,图象关于原点对称,①正确;为周期函数,不是周期函数,不是周期函数,②错误;,,不是最值,③错误;令,当时,,,,此时与无交点;当时,,,,此时与无交点;综上所述:与无交点,④正确.故选:.【点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.7、C【解析】

首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可.【详解】解:.,,的周期为,,,,,..故选:C【点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.8、A【解析】

根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最小值即可得到结果.【详解】为定义在上的偶函数,图象关于轴对称又在上是增函数在上是减函数,即对于恒成立在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.9、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.∵S=2+22+…+21=121,故①中应填n≤1.故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.10、A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.11、C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.12、D【解析】因为角的终边经过点,所以,则,即.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

作出图像,设点,根据已知可得,,且,可解出,计算即得.【详解】如图,设,圆心坐标为,可得,,,,,解得,,即的长是.故答案为:【点睛】本题考查直线与圆的位置关系,以及求平面两点间的距离,运用了数形结合的思想.14、【解析】

根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.15、;【解析】试题分析:如图:此几何体是四棱锥,底面是边长为的正方形,平面平面,并且,,所以体积是,解得,四个侧面都是直角三角形,所以计算出边长,表面积是考点:1.三视图;2.几何体的表面积.16、3【解析】由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为,如图所示,平面,所以底面积为,几何体的高为,所以其体积为.点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值.【详解】(1)当时,,于是,.又因为,当时,且.故当时,,即.所以,函数为上的增函数,于是,.因此,对,;(2)方法一:由题意在上存在极值,则在上存在零点,①当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;所以为函数的极小值点;②当时,在上成立,所以在上单调递增,所以在上没有极值;③当时,在上成立,所以在上单调递减,所以在上没有极值,综上所述,使在上存在极值的的取值范围是.方法二:由题意,函数在上存在极值,则在上存在零点.即在上存在零点.设,,则由单调性的性质可得为上的减函数.即的值域为,所以,当实数时,在上存在零点.下面证明,当时,函数在上存在极值.事实上,当时,为上的增函数,注意到,,所以,存在唯一实数,使得成立.于是,当时,,为上的减函数;当时,,为上的增函数;即为函数的极小值点.综上所述,当时,函数在上存在极值.【点睛】本题考查利用导数研究函数的最值,涉及函数的单调性,导数的应用,函数的最值的求法,考查构造法的应用,是一道综合题.18、详见解析【解析】

选择①,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择②,利用正弦定理得出,由余弦定理求出,再求边上的高.选择③,利用余弦定理列方程求出,再计算边上的高.【详解】选择①,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择②,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择③,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.【点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.19、Ⅰ详见解析;Ⅱ①,②或.【解析】

Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:Ⅰ在图1中,,,为平行四边形,,,,当沿AD折起时,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,,0,,1,,0,,1,1,,1,,0,,设平面PBC的法向量为y,,则,取,得0,,设平面PCD的法向量b,,则,取,得1,,设二面角的大小为,可知为钝角,则,.二面角的大小为.设AM与面PBC所成角为,0,,1,,,,平面PBC的法向量0,,直线AM与平面PBC所成的角为,,解得或.【点睛】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.20、(1)当时,公路的长度最短为千米;(2)(千米).【解析】

(1)设切点的坐标为,利用导数的几何意义求出切线的方程为,根据两点间距离得出,构造函数,利用导数求出单调性,从而得出极值和最值,即可得出结果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根据勾股定理即可求出的长度.【详解】(1)由题可知,设点的坐标为,又,则直线的方程为,由此得直线与坐标轴交点为:,则,故,设,则.令,解得=10.当时,是减函数;当时,是增函数.所以当时,函数有极小值,也是最小值,所以,此时.故当时,公路的长度最短,最短长度为千米.(2)在中,,,所以,所以,根据正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【点睛】本题考查利用导数解决实际的最值问题,涉及构造函数法以及利用导数研究函数单调性和极值,还考查正余弦定理的实际应用,还考查解题分析能力和计算能力.21、(1);(2).【解析】

(1)连接交于点,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论