




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省德宏市高考冲刺模拟数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则()A. B.C. D.2.如图,在四边形中,,,,,,则的长度为()A. B.C. D.3.若集合,,则下列结论正确的是()A. B. C. D.4.已知,满足条件(为常数),若目标函数的最大值为9,则()A. B. C. D.5.体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是()A.3 B.4 C.5 D.66.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q7.如果实数满足条件,那么的最大值为()A. B. C. D.8.设正项等比数列的前n项和为,若,,则公比()A. B.4 C. D.29.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]10.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.11.已知命题,,则是()A., B.,.C., D.,.12.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.14.设全集,,,则______.15.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.16.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积20.(12分)某工厂,两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,生产线生产的产品为合格品的概率分别为和.(1)从,生产线上各抽检一件产品,若使得至少有一件合格的概率不低于,求的最小值.(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的作为的值.①已知,生产线的不合格产品返工后每件产品可分别挽回损失元和元.若从两条生产线上各随机抽检件产品,以挽回损失的平均数为判断依据,估计哪条生产线挽回的损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件分别获利元、元、元,现从,生产线的最终合格品中各随机抽取件进行检测,结果统计如下图;用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为,求的分布列并估算该厂产量件时利润的期望值.21.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.22.(10分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,①若点为椭圆的上顶点,原点为的垂心,求线段的长;②若原点为的重心,求原点到直线距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.2、D【解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、D【解析】
由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.4、B【解析】
由目标函数的最大值为9,我们可以画出满足条件件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值.【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:.故选:.【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值.5、B【解析】
通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【详解】“正面朝南”“正面朝北”分别用“∧”“∨”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次数为4次.故选:B.【点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.6、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。7、B【解析】
解:当直线过点时,最大,故选B8、D【解析】
由得,又,两式相除即可解出.【详解】解:由得,又,∴,∴,或,又正项等比数列得,∴,故选:D.【点睛】本题主要考查等比数列的性质的应用,属于基础题.9、B【解析】
作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.10、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.11、B【解析】
根据全称命题的否定为特称命题,得到结果.【详解】根据全称命题的否定为特称命题,可得,本题正确选项:【点睛】本题考查含量词的命题的否定,属于基础题.12、D【解析】
a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.14、【解析】
先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.【点睛】本题主要考查集合的交集、补集运算,属于基础题.15、1【解析】
当时,得,或,依题意可得,可求得,继而可得答案.【详解】因为点的横坐标为1,即当时,,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,,所以,故,所以函数的关系式为.当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点.故答案为:1.【点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.16、55【解析】
由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】
(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1).(2).【解析】
(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间[20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率.(2)当温度大于等于25℃时,需求量为500,求出Y=900元;当温度在[20,25)℃时,需求量为300,求出Y=300元;当温度低于20℃时,需求量为200,求出Y=﹣100元,从而当温度大于等于20时,Y>0,由此能估计估计Y大于零的概率.【详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p.(2)当温度大于等于25℃时,需求量为500,Y=450×2=900元,当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元,当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元,当温度大于等于20时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P.【点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19、(1),;(2).【解析】
(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.【点睛】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.20、(1)(2)①生产线上挽回的损失较多.②见解析【解析】
(1)由题意得到关于的不等式,求解不等式得到的取值范围即可确定其最小值;(2)①.由题意利用二项分布的期望公式和数学期望的性质给出结论即可;②.由题意首先确定X可能的取值,然后求得相应的概率值可得分布列,最后由分布列可得利润的期望值.【详解】(1)设从,生产线上各抽检一件产品,至少有一件合格为事件,设从,生产线上抽到合格品分别为事件,,则,互为独立事件由已知有,则解得,则的最小值(2)由(1)知,生产线的合格率分别为和,即不合格率分别为和.①设从,生产线上各抽检件产品,抽到不合格产品件数分别为,,则有,,所以,生产线上挽回损失的平均数分别为:,所以生产线上挽回的损失较多.②由已知得的可能取值为,,,用样本估计总体,则有,,所以的分布列为所以(元)故估算估算该厂产量件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年丽水市缙云县人民法院招聘笔试真题
- 2024年金昌市中级人民法院招聘笔试真题
- 2024年恒丰银行成都分行招聘笔试真题
- 重视员工意见与建议计划
- 行业动态与自身发展的关联计划
- 网络管理实践中的案例借鉴试题及答案
- 网络工具使用技巧试题及答案
- 2025年战略管理中的人力资源考量试题及答案
- 企业环境风险与长远战略目标的互动研究试题及答案
- 提升竞争力2025年软件设计师考试试题及答案
- 2024年中国家具电商行业市场竞争格局及投资方向研究报告(智研咨询)
- 导数(30题)-2024年考前15天高考数学冲刺大题训练(新高考)含答案
- 高层建筑一栋一册消防安全档案
- 创造性思维与创新方法智慧树知到期末考试答案章节答案2024年大连理工大学
- 外科围手术期营养支持疗法
- 广东省深圳市南山区2023-2024学年四年级下学期期末科学试题
- 2024年江苏省高考化学试卷(含答案)
- 2024年安徽省初中(八年级)学业水平考试初二会考地理试卷真题
- 小学二年级数学100以内三数加减混合运算综合测验试题大全附答案
- 中国特色社会主义期中测试题-2023-2024学年中职高教版
- 学习康复科常见物理治疗法课件
评论
0/150
提交评论