




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市青冈县县第一中学2025届高三下学期联合考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在三棱锥中,,,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为()A. B. C. D.2.一个陶瓷圆盘的半径为,中间有一个边长为的正方形花纹,向盘中投入1000粒米后,发现落在正方形花纹上的米共有51粒,据此估计圆周率的值为(精确到0.001)()A.3.132 B.3.137 C.3.142 D.3.1473.已知函数满足,当时,,则()A.或 B.或C.或 D.或4.设点,,不共线,则“”是“”()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件5.已知三棱柱()A. B. C. D.6.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.7.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.8.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.9.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)10.已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为()变量x0123变量y35.57A.0.9 B.0.85 C.0.75 D.0.511.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.12.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正奇数非减数列中,每个正奇数出现次.已知存在整数、、,对所有的整数满足,其中表示不超过的最大整数.则等于______.14.已知向量,,则______.15.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.16.已知集合A=,B=,若AB中有且只有一个元素,则实数a的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:()上横坐标为3的点与抛物线焦点的距离为4.(1)求p的值;(2)设()为抛物线上的动点,过P作圆的两条切线分别与y轴交于A、B两点.求的取值范围.18.(12分)如图所示,直角梯形ABCD中,,,,四边形EDCF为矩形,,平面平面ABCD.(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值.(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由.19.(12分)已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.20.(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.21.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.22.(10分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
设的中点为O先求出外接圆的半径,设,利用平面ABC,得,在及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题2、B【解析】
结合随机模拟概念和几何概型公式计算即可【详解】如图,由几何概型公式可知:.故选:B【点睛】本题考查随机模拟的概念和几何概型,属于基础题3、C【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.4、C【解析】
利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.5、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=6、A【解析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.7、B【解析】
基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.8、D【解析】
由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【详解】,.故选:D.【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.9、C【解析】
根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.10、A【解析】
计算,代入回归方程可得.【详解】由题意,,∴,解得.故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点.11、B【解析】
先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.12、B【解析】
根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
将已知数列分组为(1),,共个组.设在第组,,则有,即.注意到,解得.所以,.因此,.故.14、【解析】
求出,然后由模的平方转化为向量的平方,利用数量积的运算计算.【详解】由题意得,.,.,,.故答案为:.【点睛】本题考查求向量的模,掌握数量积的定义与运算律是解题基础.本题关键是用数量积的定义把模的运算转化为数量积的运算.15、【解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.16、2【解析】
利用AB中有且只有一个元素,可得,可求实数a的值.【详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得到求解.(2)设过点的直线方程为,根据直线与圆相切,则有,整理得:,根据题意,建立,将韦达定理代入求解.【详解】(1)因为横坐标为3的点与抛物线焦点的距离为4,由抛物线的定义得:,解得:.(2)设过点的直线方程为,因为直线与圆相切,所以,整理得:,,由题意得:所以,,因为,所以,所以.【点睛】本题主要考查抛物线的定义及点与抛物线,直线与圆的位置关系,还考查了运算求解的能力,属于中档题.18、(I)见解析(II)(III)【解析】试题分析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,由题意可得平面的法向量,且,据此有,则平面.(Ⅱ)由题意可得平面的法向量,结合(Ⅰ)的结论可得,即平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,则,而平面的法向量,据此可得,解方程有或.据此计算可得.试题解析:(Ⅰ)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,如图,则,,,,∴,,设平面的法向量,∴不妨设,又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,设平面的法向量,∴不妨设,∴,∴平面与平面所成锐二面角的余弦值为.(Ⅲ)设,,∴,∴,又∵平面的法向量,∴,∴,∴或.当时,,∴;当时,,∴.综上,.19、(1)(2)证明见解析;定点坐标为【解析】
(1)由条件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【详解】(1)由题有,.∴,∴.∴椭圆方程为.(2)由得,.又∴,同理又∴∴∴∴∴∴,此时满足∴∴直线恒过定点【点睛】涉及椭圆的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体带入”等解法.20、(1);(2)【解析】
(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,,当时,当时,有两个零点时,实数的取值范围为;(2)当时,,原命题等价于对一切恒成立对一切恒成立.令令,,则在上单增又,,使即①当时,,当时,,即在递减,在递增,由①知函数在单调递增即,实数的取值范围为.【点睛】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能力和分析能力,是一道难度较大的题目.21、(1)曲线的普通方程为;直线的直角坐标方程为(2)【解析】
(1)利用消去参数,将曲线的参数方程化成普通方程,利用互化公式,将直线的极坐标方程化为直角坐标方程;(2)根据(1)求出曲线的极坐标方程,分别联立射线与曲线以及射线与直线的极坐标方程,求出和,即可求出.【详解】解:(1)因为(为参数),所以消去参数,得,所以曲线的普通方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论