北京朝阳陈经纶中学2025届高三第二次联考数学试卷含解析_第1页
北京朝阳陈经纶中学2025届高三第二次联考数学试卷含解析_第2页
北京朝阳陈经纶中学2025届高三第二次联考数学试卷含解析_第3页
北京朝阳陈经纶中学2025届高三第二次联考数学试卷含解析_第4页
北京朝阳陈经纶中学2025届高三第二次联考数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京朝阳陈经纶中学2025届高三第二次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正三棱柱中,,是的中点,则异面直线与所成的角为()A. B. C. D.2.设命题p:>1,n2>2n,则p为()A. B.C. D.3.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.4.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()A. B.4 C. D.165.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.6.已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是()A. B. C. D.7.已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为()A. B. C. D.8.设实数x,y满足条件x+y-2⩽02x-y+3⩾0x-y⩽0则A.1 B.2 C.3 D.49.设是定义在实数集上的函数,满足条件是偶函数,且当时,,则,,的大小关系是()A. B. C. D.10.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.12.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.14.已知,如果函数有三个零点,则实数的取值范围是____________15.函数的定义域是.16.已知各项均为正数的等比数列的前项积为,,(且),则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.18.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.19.(12分)在平面直角坐标系xOy中,椭圆C:x2a2(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;②若原点O到直线l的距离为1,并且20.(12分)已知函数()(1)函数在点处的切线方程为,求函数的极值;(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.22.(10分)如图,三棱柱的所有棱长均相等,在底面上的投影在棱上,且∥平面(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,,由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则//,,∴即为异面直线与所成角,设,则,,,则,∴.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.2、C【解析】根据命题的否定,可以写出:,所以选C.3、D【解析】

因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.4、D【解析】

根据复数乘方公式:,直接求解即可.【详解】,.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.5、C【解析】

根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.6、D【解析】

根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,,则,解得:设,,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.7、D【解析】

由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,,,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.8、C【解析】

画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x∈-13,1时,故选:C.【点睛】本题考查了线性规划问题,画出图像是解题的关键.9、C【解析】∵y=f(x+1)是偶函数,∴f(-x+1)=f(x+1),即函数f(x)关于x=1对称.

∵当x≥1时,为减函数,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故选C10、D【解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【点睛】本题考查复数对应的点的位置的判断,属于基础题.11、D【解析】

首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.12、C【解析】

根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(14、【解析】

首先把零点问题转化为方程问题,等价于有三个零点,两侧开方,可得,即有三个零点,再运用函数的单调性结合最值即可求出参数的取值范围.【详解】若函数有三个零点,即零点有,显然,则有,可得,即有三个零点,不妨令,对于,函数单调递增,,,所以函数在区间上只有一解,对于函数,,解得,,解得,,解得,所以函数在区间上单调递减,在区间上单调递增,,当时,,当时,,此时函数若有两个零点,则有,综上可知,若函数有三个零点,则实数的取值范围是.故答案为:【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解参数的范围,属于难题.15、【解析】解:因为,故定义域为16、【解析】

利用等比数列的性质求得,进而求得,再利用对数运算求得的值.【详解】由于,,所以,则,∴,,.故答案为:【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)利用导函数的正负确定函数的增减.(2)函数在有两个零点,即方程在区间有两解,令通过二次求导确定函数单调性证明参数范围.【详解】解:(1)证明:因为,当时,,,所以在区间递减;当时,,所以,所以在区间递增;且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解,令,则令,则,所以在单调递增,又,故存在唯一的,使得,即,所以在单调递减,在区间单调递增,且,又因为,所以,方程关于的方程在有两个零点,由的图象可知,,即.【点睛】本题考查利用导数研究函数单调性,确定函数的极值,利用二次求导,零点存在性定理确定参数范围,属于难题.18、(1);(2);(3)【解析】

(1)依题意,得,,由此能求出椭圆C的方程.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,故,由,知,由此能求出圆T的方程.(3)设,则直线MP的方程为:,令,得,同理:,由此能证明为定值.【详解】(1)依题意,得,,,故椭圆C的方程为.(2)点与点关于轴对称,设,,设,由于点在椭圆C上,所以,由,则,.由于,故当时,的最小值为,所以,故,又点在圆T上,代入圆的方程得到.故圆T的方程为:(3)设,则直线MP的方程为:,令,得,同理:.故又点与点在椭圆上,故,代入上式得:,所以【点睛】本题考查了椭圆的几何性质、圆的轨迹方程、直线与椭圆的位置关系中定值问题,考查了学生的计算能力,属于中档题.19、(1)x22+y2【解析】

(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2又由右准线方程为x=2,得到a2解得a=2,c=1,所以所以,椭圆C的方程为x2(2)①设B(x1,y1∵ON=6因为点B,N都在椭圆上,所以x122+y12所以OB=x②由原点O到直线l的距离为1,得|m|1+k2联立直线l的方程与椭圆C的方程:y=kx+mx2设A(x1,y1OA=(1+k2)所以k△OAB的面积S==1因为S=2λ(1-λ)在[并且当λ=45时,S=225所以△OAB的面积S的范围为[10【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.20、(1)极小值为,极大值为.(2)【解析】

(1)根据斜线的斜率即可求得参数,再对函数求导,即可求得函数的极值;(2)根据题意,对目标式进行变形,构造函数,根据是单调减函数,分离参数,求函数的最值即可求得结果.【详解】(1)函数的定义域为,,,,可知,,解得,,可知在,时,,函数单调递增,在时,,函数单调递减,可知函数的极小值为,极大值为.(2)可以变形为,可得,可知函数在上单调递减,,可得,设,,可知函数在单调递减,,可知,可知参数的取值范围为.【点睛】本题考查由切线的斜率求参数的值,以及对具体函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论