9.5 第2课时 用平方差公式分解因式 习题练_第1页
9.5 第2课时 用平方差公式分解因式 习题练_第2页
9.5 第2课时 用平方差公式分解因式 习题练_第3页
9.5 第2课时 用平方差公式分解因式 习题练_第4页
9.5 第2课时 用平方差公式分解因式 习题练_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏科版七年级下9.5.2多项式的因式分解

用平法差公式分解因式第九章整式乘法与因式分解答案呈现温馨提示:点击进入讲评习题链接12345678109AAABA1.应用平方差公式分解因式的条件:(1)多项式是二项式;(2)每一项都可以表示成平方的形式;(3)两项的符号相反.2.用平方差公式分解因式常与提公因式法分解因式相结合,

在这种情况下,一般先提公因式,再利用平方差公式分解

因式.知识点1

直接用平方差公式分解因式1.

(2023·兰州母题·教材P83例3)因式分解:x2-25y2=

⁠.(x+

5y)(x-5y)

2.[2023·杭州]分解因式:4a2-1=(

A

)A.(2a-1)(2a+1)B.(a-2)(a+2)C.(a-4)(a+1)D.(4a-1)(a+1)A3.对于任何整数m,多项式(4m+5)2-9都能(

A

)A.被8整除B.被m整除C.被m-1整除D.被2m-1整除【点拨】(4m+5)2-9=(4m+5)2-32=(4m+5+3)(4m+5-3)=

(4m+8)(4m+2)=4(m+2)·2·(2m+1)=8(m+2)(2m+1),故

(4m+5)2-9能被8,m+2,2m+1整除,所以选A.A4.[2022·荆门]对于任意数a,b,a3+b3=(a+b)(a2-ab+b2)

恒成立,则下列关系式正确的是(

A

)A.a3-b3=(a-b)(a2+ab+b2)B.a3-b3=(a+b)(a2+ab+b2)C.a3-b3=(a-b)(a2-ab+b2)D.a3-b3=(a+b)(a2+ab-b2)A【点拨】因为a3+b3=(a+b)(a2-ab+b2),所以a3-b3=a3+(-b3)=a3+(-b)3=[a+(-b)][a2-a·(-b)

+(-b)2]=(a-b)(a2+ab+b2).5.将(2x)n-81因式分解后得(4x2+9)(2x+3)(2x-3),则n等于

(

B

)A.2B.4C.6D.8【点拨】因为(4x2+9)(2x+3)(2x-3)=(4x2+9)(4x2-9)=16x4-

81=(2x)4-81=(2x)n-81,所以n=4.故选B.B知识点2

先提取公因式,再用平方差公式分解因式6.[2023·内江]分解因式:x3-xy2=

⁠.x(x+y)(x-y)

7.一次课堂练习,小颖同学做了以下几道因式分解题,你认

为她做得不够完整的是(

A

)A.x3-x=x(x2-1)B.x2y-y3=y(x+y)(x-y)C.-m2+4n2=(2n+m)(2n-m)D.3p2-27q2=3(p+3q)(p-3q)【点拨】A选项还可以用平方差公式接着分解,x3-x=x(x2-1)

=x(x+1)(x-1),故选A.A易错点分解不彻底导致出错8.分解因式:(2x-y)2-(4x+3y)2=

⁠.【点拨】

分解因式要彻底.原式=[(2x-y)+(4x+3y)]·[(2x-y)-(4x+3y)]=(6x+2y)(-2x-4y)=-4(3x+y)(x+2y).-4(3x+y)(x+2y)

利用平方差公式分解因式及求值9.[2022·六盘水]如图,学校劳动实践基地有两块边长分别为

a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的式子表示A中能使用的面积:

⁠;【点拨】A中能使用的面积=大正方形的面积-不能使用的面积,即a2-M.a2-M

(2)若a+b=10,a-b=5,求A比B多出的使用面积.

【解】A比B多出的使用面积为(a2-M)-(b2-M)=a2-b2

=(a+b)(a-b)=10×5=50.答:A比B多出的使用面积为50.

利用平方差公式及整体思想巧求值10.(1)[2022·苏州]已知x+y=4,x-y=6,则x2-y2

⁠;(2)已知|a-b-3|+(a+b-2)2=0,求a2-b2的值

;【解】因为|a-b-3|+(a+b-2)2=0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论