




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省聊城市茌平县第二中学2025届高考冲刺押题(最后一卷)数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.要得到函数的导函数的图像,只需将的图像()A.向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B.向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C.向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D.向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍2.双曲线的渐近线方程为()A. B.C. D.3.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.4.定义,已知函数,,则函数的最小值为()A. B. C. D.5.下列命题中,真命题的个数为()①命题“若,则”的否命题;②命题“若,则或”;③命题“若,则直线与直线平行”的逆命题.A.0 B.1 C.2 D.36.已知角的终边经过点P(),则sin()=A. B. C. D.7.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是()A.29 B.30 C.31 D.328.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.50509.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,10.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.11.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为()A. B. C. D.12.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.观察下列式子,,,,……,根据上述规律,第个不等式应该为__________.14.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.15.如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是______.16.已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)判断函数在区间上的零点的个数;(2)记函数在区间上的两个极值点分别为、,求证:.18.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.19.(12分)设函数().(1)讨论函数的单调性;(2)若关于x的方程有唯一的实数解,求a的取值范围.20.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.21.(12分)如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.(1)求的值:(2)若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.22.(10分)已知等差数列满足,公差,等比数列满足,,.求数列,的通项公式;若数列满足,求的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考查三角函数图像变换,属于基础题.2、A【解析】
将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.3、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.4、A【解析】
根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.5、C【解析】
否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确.【详解】①的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若且,则”,该命题为真命题,故②为真命题;③的逆命题为“若直线与直线平行,则”,该命题为真命题.故选:C.【点睛】本题考查判断命题真假.判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:①若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;②判定“若,则”是假命题,只需举一反例即可.6、A【解析】
由题意可得三角函数的定义可知:,,则:本题选择A选项.7、B【解析】
设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.8、C【解析】
因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.9、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.10、C【解析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.11、D【解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.12、D【解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据题意,依次分析不等式的变化规律,综合可得答案.【详解】解:根据题意,对于第一个不等式,,则有,对于第二个不等式,,则有,对于第三个不等式,,则有,依此类推:第个不等式为:,故答案为.【点睛】本题考查归纳推理的应用,分析不等式的变化规律.14、2【解析】
由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.15、【解析】
取中点,连结,,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围.【详解】取中点,连结,,在棱长为2的正方体中,点、分别是棱、的中点,,,,,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰△中,,,作于,由等面积法解得:,,线段长度的取值范围是,.故答案为:,.【点睛】本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.16、【解析】
依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有解得,故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)利用导数分析函数在区间上的单调性与极值,结合零点存在定理可得出结论;(2)设函数的极大值点和极小值点分别为、,由(1)知,,且满足,,于是得出,由得,利用正切函数的单调性推导出,再利用正弦函数的单调性可得出结论.【详解】(1),,,当时,,,,则函数在上单调递增;当时,,,,则函数在上单调递减;当时,,,,则函数在上单调递增.,,,,.所以,函数在与不存在零点,在区间和上各存在一个零点.综上所述,函数在区间上的零点的个数为;(2),.由(1)得,在区间与上存在零点,所以,函数在区间与上各存在一个极值点、,且,,且满足即,,,又,即,,,,,由在上单调递增,得,再由在上单调递减,得,即.【点睛】本题考查利用导数研究函数的零点个数问题,同时也考查了利用导数证明不等式,考查分析问题和解决问题的能力,属于难题.18、(1);(2)【解析】
(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,..【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积.需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路.19、(1)当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2)或.【解析】
(1)求出,对分类讨论,先考虑(或)恒成立的范围,并以此作为的分类标准,若不恒成立,求解,即可得出结论;(2)有解,即,令,转化求函数只有一个实数解,根据(1)中的结论,即可求解.【详解】(1),当时,恒成立,当时,,综上,当时,递增区间时,无递减区间,当时,递增区间时,递减区间时;(2),令,原方程只有一个解,只需只有一个解,即求只有一个零点时,的取值范围,由(1)得当时,在单调递增,且,函数只有一个零点,原方程只有一个解,当时,由(1)得在出取得极小值,也是最小值,当时,,此时函数只有一个零点,原方程只有一个解,当且递增区间时,递减区间时;,当,有两个零点,即原方程有两个解,不合题意,所以的取值范围是或.【点睛】本题考查导数的综合应用,涉及到单调性、零点、极值最值,考查分类讨论和等价转化思想,属于中档题.20、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高效复习公路工程考试试题及答案
- 优化复习的试题及答案指南
- 智能仓储与物流机器人考核试卷
- 粮食仓储企业绿色经济企业内部控制考核试卷
- 计算机二级MySQL常见问题试题及答案
- 快速提升的2025年信息系统监理师试题及答案
- 公共场所安全管理制度
- 嵌入式系统的可靠性分析方法试题及答案
- 宾馆机房卫生管理制度
- 地铁施工卫生管理制度
- 混凝土地面拆除合同协议
- 《数据资源入表白皮书2023》
- 2025年水利安全员C证考前通关必练题库-含答案
- 超星尔雅学习通《化学与中国文明(复旦大学)》2025章节测试附答案
- 酒店式公寓租赁合同终止备忘录
- 谷歌人力资源体系全解析
- 《建筑安全与耐久性》课件
- 《销售区域管理》课件
- 《井工煤矿职业病防治》培训课件2025
- uni-app移动应用开发课件 7-智慧环保项目
- 2025年事业单位考试(综合管理类A类)职业能力倾向测验试题及解答参考
评论
0/150
提交评论