




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年华师大版高一数学上册阶段测试试卷588考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、设A={1;2,3,4,5},B={1,3,7,15,31,33},下面的对应法则f能构成从A到B的映射是()
A.f:x→x2-x+1
B.f:x→x+(x+1)2
C.f:x→2x-1-1
D.f:x→2x-1
2、若函数f(x)=x2-1(x≤-1),则f-1(4)的值为()
A.
B.-
C.15
D.
3、定义在R上的函数f(x)=2x-1;则f(3)的值为()
A.-5
B.2
C.5
D.6
4、设向量满足:的夹角为则与的夹角是()A.B.C.D.5、函数f(x)=ex+x的零点所在一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)6、碘-131经常被用于对甲状腺的研究,它的半衰期大约是8天(即经过8天的时间,有一半的碘-131会衰变为其他元素).今年10月1日凌晨,在一容器中放入一定量的碘-131,到10月25日凌晨,测得该容器内还剩有2毫克的碘-131,则10月1日凌晨,放人该容器的碘-131的含量是()A.8毫克B.16毫克C.32毫克D.64毫克评卷人得分二、填空题(共5题,共10分)7、在数列{an}中,首项a1=1,an=2an-1+1(n≥2,n∈N),则a4=____.8、函数在区间上是增函数,则实数的取值范围是____。9、函数的定义域为R,且定义如下:(其中是非空实数集).若非空实数集满足则函数的值域为.10、【题文】已知条件条件则是的____11、函数的单调递增区间是____评卷人得分三、证明题(共8题,共16分)12、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.13、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.14、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.15、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.16、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.17、如图;在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.
求证:(1)∠CFD=∠CAD;
(2)EG<EF.18、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.19、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.评卷人得分四、作图题(共2题,共6分)20、作出下列函数图象:y=21、请画出如图几何体的三视图.
评卷人得分五、解答题(共2题,共8分)22、已知全集I={1;2,3,4,5,6,7,8},其中A={1,2,3,4},B={3,5,6,7}
(1)求A∪B
(2)求A∩(CIB)
23、已知圆心在直线y=2x上,且与直线4x-3y-11=0切于点(2,-1),求此圆的方程.评卷人得分六、综合题(共3题,共30分)24、如图,抛物线y=x2-2x-3与坐标轴交于A(-1,0)、B(3,0)、C(0,-3)三点,D为顶点.
(1)D点坐标为(____,____).
(2)BC=____,BD=____,CD=____;并判断△BCD的形状.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请写出符合条件的所有点P的坐标,并对其中一种情形说明理由;若不存在,请说明理由.25、如图;⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.设AD=x,BC=y.
(1)求证:AM∥BN;
(2)求y关于x的关系式;
(3)求四边形ABCD的面积S.26、如图;以A为顶点的抛物线与y轴交于点B;已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m;n)是抛物线上的一点(m;n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.参考答案一、选择题(共6题,共12分)1、D【分析】
当x=4时,x2-x+1=13;在B集合中没有元素和它对应,故A不能构成;
当x=4时,x+(x+1)2=29;在B集合中没有元素和它对应,故B不能构成;
当x=1时,2x-1-1=0;在B集合中没有元素和它对应,故C不能构成;
根据映射的定义知只有D符合要求;
故选D.
【解析】【答案】根据所给的两个集合;对于集合A中的每一个元素,在集合B中都有唯一的一个元素与它对应,从集合A中取一个特殊的元素4,进行检验,去掉两个答案,A中取一个特殊的元素1,去掉一个不合题意的C,得到结果.
2、B【分析】
因为原函数与反函数的定义域与值域是互换的,所以要求f-1(4)的值;
只需求解x2-1=4(x≤-1);的解即可.
解得x=-.
故选B.
【解析】【答案】利用原函数与反函数的定义域与值域的对应关系,求出f-1(4)的值即可.
3、C【分析】
∵f(x)=2x-1;∴f(3)=5;
故选C.
【解析】【答案】将解析式中的x换成3进行求解即可.
4、C【分析】【解析】试题分析:根据题意,由于的夹角为则可知所以那么根据向量夹角的范围可知,满足题意的夹角为选C.考点:向量的数量积【解析】【答案】C5、B【分析】【解答】∵函数f(x)=ex+x是R上的连续函数,f(﹣1)=﹣1<0;f(0)=1>0;
∴f(﹣1)•f(0)<0;
故函数f(x)=ex+x的零点所在一个区间是(﹣1;0);
故选B.
【分析】由函数f(x)是R上的连续函数,且f(﹣1)•f(0)<0,根据函数的零点的判定定理得出结论.6、B【分析】解:由题意,设10月1日凌晨,放人该容器的碘-131的含量是x毫克,则x•=2;
∴x=16毫克.
故选B.
设10月1日凌晨,放人该容器的碘-131的含量是x毫克,则x•=2;即可得出结论.
本题考查利用数学知识解决实际问题,考查方程思想,比较基础.【解析】【答案】B二、填空题(共5题,共10分)7、略
【分析】
由题意知:
∵an=2an-1+1
∴an+1=2(an-1+1)
∴数列{an+1}为以2为首相;以公比为2的等比数列.
∴an+1=2•2n-1
∴an=2n-1
∴a4=15
故答案为:15.
【解析】【答案】此题由递推公式构造新等比数列{an+1},求数列{an}的通项公式,然后求其a4的值.
8、略
【分析】由于在定义域内是减函数,所以由复合函数的单调性知根据条件还得满足在上恒大于零,所以所以故【解析】【答案】9、略
【分析】试题分析:【解析】
根据题意:当时,=当时,=当时,=综上可知,对于任意所以答案应填:考点:函数的概念与分段函数.【解析】【答案】10、略
【分析】【解析】本题考查不等式的解法及充要条件的判断.
由得或则或则
由得则则或
令
则且即是的真子集;
故是的充分不必要条件【解析】【答案】____11、[2,+∞)【分析】【解答】
∴f(x)在定义域[2;+∞)上单调递增;
即f(x)的单调递增区间是[2;+∞).
故答案为:[2;+∞).
【分析】可求导数,根据导数符号即可判断f(x)在定义域上为增函数,从而便可得出f(x)的单调递增区间.三、证明题(共8题,共16分)12、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.13、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.14、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.15、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.16、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.17、略
【分析】【分析】(1)连接AF,并延长交BC于N,根据相似三角形的判定定理证△BDF∽△DEF,推出,=;再证△CDF∽△AEF,推出∠CFD=∠AFE,证出A;F、D、C四点共圆即可;
(2)根据已知推出∠EFG=∠ABD,证F、N、D、G四点共圆,推出∠EGF=∠AND,根据三角形的外角性质推出∠EGF>∠EFG即可.【解析】【解答】(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
则=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四点共圆;
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四点共圆;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.18、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.19、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.四、作图题(共2题,共6分)20、【解答】幂函数y={#mathml#}x32
{#/mathml#}的定义域是[0;+∞),图象在第一象限,过原点且单调递增,如图所示;
【分析】【分析】根据幂函数的图象与性质,分别画出题目中的函数图象即可.21、解:如图所示:
【分析】【分析】由几何体是圆柱上面放一个圆锥,从正面,左面,上面看几何体分别得到的图形分别是长方形上边加一个三角形,长方形上边加一个三角形,圆加一点.五、解答题(共2题,共8分)22、略
【分析】
(1)∵A={1;2,3,4},B={3,5,6,7}
∴A∪B={1;2,3,4,5,6,7};
(2)∵I={1;2,3,4,5,6,7,8};
∴CIB={1,2,4,8},
∴A∩CIB={1;2,3,4}∩{1,2,4,8}={1,2,4}.
【解析】【答案】(1)利用两个集合的交集的定义求出A∩B.
(2)先利用补集的定义求出CIB,再利用两个集合的交集的定义求出A∩(CIB).
23、略
【分析】
设圆的标准方程为(x-a)2+(y-b)2=r2(r>0).由于圆心在直线y=2x上,且与直线4x-3y-11=0切于点(2,-1),可得解得即可.
本题考查了圆的标准方程、直线与圆相切的位置关系,属于中档题.【解析】解:设圆的标准方程为(x-a)2+(y-b)2=r2(r>0).
∵圆心在直线y=2x上;且与直线4x-3y-11=0切于点(2,-1);
∴解得a=b=r=.
故所求的圆的方程为(x-)2+(y-)2=.六、综合题(共3题,共30分)24、略
【分析】【分析】(1)直接利用抛物线的顶点公式即可得出D点的坐标;
(2)结合题意;可知可得出B点;C点和点D点的坐标,即可分别得出三个线段的长度,利用向量关系易得,BC⊥CD,即△BCD为直角三角形;
(3)假设存在这样的点P,经分析,有以下几种情况:①连接AC,可知Rt△COA∽Rt△BCD,②过A作AP1⊥AC交y轴于P1,可知Rt△CAP1∽Rt△BCD;③过4C作CP2⊥AC,交x轴于P2
可知Rt△P2CA∽Rt△BCD;结合上述情况,分别可得出对应的P的坐标;【解析】【解答】解:(1)D(1;-4)(2分)
(2)结合题意;可得C(0,-3);B(3,0)
,BD=2,CD=;
且=(3,1),=(1;-3);
可知;
即△BCD是直角三角形(6分)
(3)①连接AC;可知Rt△COA∽Rt△BCD,符合条件的点为O(0,0)
②过A作AP1⊥AC交y轴于P1
可知Rt△CAP1∽Rt△BCD符合条件的点为
③过C作CP2⊥AC,交x轴于P2
可知Rt△P2CA∽Rt△BCD,符合条件的点为P2(9;0)
∴符合条件的点有三个:O(0,0),,P2(9,0)(12分)25、略
【分析】【分析】(1)由AB是直径;AM;BN是切线,得到AM⊥AB,BN⊥AB,根据垂直于同一条直线的两直线平行即可得到结论;
(2)过点D作DF⊥BC于F;则AB∥DF,由(1)AM∥BN,得到四边形ABFD为矩形,于是得到DF=AB=2,BF=AD=x,根据切线长定理得DE=DA=x,CE=CB=y.根据勾股定理即可得到结果;
(3)根据梯形的面积公式即可得到结论.【解析】【解答】(1)证明:∵AB是直径;AM;BN是切线;
∴AM⊥AB;BN⊥AB;
∴AM∥BN;
(2)解:过点D作DF⊥BC于F;则AB∥DF;
由(1)AM∥BN;
∴四边形ABFD为矩形;
∴DF=AB=2;BF=AD=x;
∵DE;DA;CE、CB都是切线;
∴根据切线长定理;得DE=DA=x,CE=CB=y.
在Rt△DFC中;DF=2,DC=DE+CE=x+y,CF=BC-BF=y-x;
∴(x+y)2=22+(y-x)2;
化简,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汕尾市2025届四下数学期末质量跟踪监视模拟试题含解析
- 西安健康工程职业学院《幼儿玩具制作》2023-2024学年第二学期期末试卷
- 信息安全管理与2025年考试试题及答案
- 2025年心理健康教育教师资格证考试试卷及答案
- 山西省大同市矿区恒安第一中学2025届初三下学期第一次段考生物试题含解析
- 娄底职业技术学院《初级计量经济学》2023-2024学年第二学期期末试卷
- 吉林省长春市高新区2025年初三第九次考试生物试题含解析
- 江苏省镇江市丹阳三中学2025年初三网络模拟考试物理试题含解析
- 山西省阳泉市平定县重点中学2025届初三5月质量检测试题(A卷)生物试题文试题含解析
- 知识产权许可与反许可知识产权转让协议
- DL-T5372-2017水电水利工程金属结构与机电设备安装安全技术规程
- 人教版数学《认识钟表》公开课课件1
- Pep 新版小学英语六年级下册一般过去时复习课教案
- 产科10个临床路径
- 儿科入院安全宣教
- 082023年青岛西海岸新区中考自主招生化学模拟题
- 上海大学继续教育市场营销网课答案更新版
- 电气工程及其自动化新能源发电方向
- 2024年3月济南市2024届高三模拟考试(一模)英语试卷(含答案)
- 库仑定律(公开课)完整版
- 海洋塑料垃圾治理国际协作
评论
0/150
提交评论