




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2025学年山东省淄博市高一上学期期末数学质量检测试卷一、单选题(本大题共8小题)1.已知全集,集合,则(
)A. B. C. D.2.函数的定义域为(
)A. B. C. D.3.是幂函数,且在上是减函数,则实数(
)A.2 B. C.4 D.2或4.已知扇形的半径为,面积为,则扇形圆心角的弧度数为(
)A.1 B.2 C.3 D.45.科学家以里氏震级来度量地震的强度,若设I为地震时所散发出来的相对能量程度,则里氏震级r可定义为,若级地震释放的相对能量为,级地震释放的相对能量为,记,n约等于A.16 B.20 C.32 D.906.设a,b,c都是正数,且,那么下列关系正确的是(
)A. B. C. D.7.已知,且,则的值为(
)A. B. C. D.或8.已知若为第二象限角,则下列结论正确的是(
)A. B.C.或 D.二、多选题(本大题共4小题)9.下列结论成立的是(
)A.若,则 B.若,则C.若,则 D.若,则10.如图,已知矩形表示全集,是的两个子集,则阴影部分可表示为(
)A. B. C. D.11.下列说法正确的有(
)A.“,使得”的否定是“,都有”B.若函数的值域为,则实数m的取值范围是C.若,则“”的充要条件是“”D.若,则的最小值为912.设函数的定义域为,为奇函数,为偶函数,当时,,则下列结论正确的是(
)A. B.在上为增函数C.点是函数的一个对称中心 D.方程仅有5个实数解三、填空题(本大题共4小题)13..14.若“,”为真命题,则实数a的取值范围为.15.若,则.16.设m是不为0的实数,已知函数,若函数有7个零点,则m的取值范围是.四、解答题(本大题共6小题)17.已知角的始边与x轴的正半轴重合,终边过定点.(1)求、的值;(2)求的值.18.已知函数为一元二次函数,的图象过点,对称轴为,函数在上的最大值为.(1)求的解析式;(2)当,时,求函数的最大值(用含参数m的分段函数表示).19.已知集合,,(1)若集合,求实数的值;(2)若集合,求实数的取值范围.20.我们知道存储温度(单位:℃)会影响着鲜牛奶的保鲜时间(单位:),温度越高,保鲜时间越短.已知与之间的函数关系式为(为自然对数的底数),某款鲜牛奶在5℃的保鲜时间为,在25℃的保鲜时间为.(参考数据:)(1)求此款鲜牛奶在0℃的保鲜时间约为几小时(结果保留到整数);(2)若想要保证此款鲜牛奶的保鲜时间不少于,那么对存储温度有怎样的要求?21.已知函数(),满足函数是奇函数.(1)求函数,的值域;(2)函数在区间和上均单调递增,求实数a的取值范围.22.设函数.(1)证明函数在上是增函数;(2)若,是否存在常数,,,使函数在上的值域为,若存在,求出的取值范围;若不存在,请说明理由.
答案1.【正确答案】D【分析】先求的并集再求补集即可.【详解】易知,则,故选:D.2.【正确答案】C【分析】由真数大于零可得.【详解】要使函数有意义,则有,解得,则函数的定义域为.故选:C.3.【正确答案】A【分析】根据幂函数的性质和定义即可求解.【详解】由于是幂函数,所以,解得或,由于在上是减函数,所以,故,因此,故选:A4.【正确答案】D设扇形圆心角的弧度数为,则根据扇形面积公式,列出方程求解即可.【详解】设扇形圆心角的弧度数为,则根据扇形面积公式,代入可得:,解得,故选:D.本题主要考查了扇形的面积公式,考查学生的运算,属于基础题.5.【正确答案】C【分析】由题意可得分别代值计算,比较即可【详解】,当时,,当时,,故选本题主要考查了指数与对数的相互转化及指数与对数值的计算,属于基础试题.6.【正确答案】C【分析】首先根据指对互化,利用对数表示,再结合对数运算判断选项.【详解】由,得,,,,,,则,根据可知,.故选:C7.【正确答案】C【分析】利用同角三角函数之间的关系式可得,根据即可求得结果.【详解】将两边同时平方可得,,可得;又,所以;易知,可得;又,所以.故选:C8.【正确答案】D【分析】根据同角平方和关系即可结合角的范围求解.【详解】由可得或,由于为第二象限角,所以,故当时,不符合要求,则符合要求,故选:D9.【正确答案】BD【分析】选项AC,特值法可排除;选项B,由不等式的性质可得;选项C,由幂函数性质可得.【详解】选项A,当时,,但,故A错误;选项B,由知,,所以,故B正确;选项C,当时,,则,此时,故C错误;选项D,由幂函数在上是增函数,由,得,即,故D正确.故选:BD.10.【正确答案】AD【分析】在阴影部分区域内任取一个元素,分析元素与各集合的关系,即可得出合适的选项.【详解】在阴影部分区域内任取一个元素,则且,即且,所以阴影部分可表示为,A对;且,阴影部分可表示为,而,故C错误;且,阴影部分可表示为,D对;显然,阴影部分区域所表示的集合为的真子集,B选项不合乎要求.故选:AD.11.【正确答案】BD【分析】选项A,由存在量词命题的否定形式可得;选项B,函数的值域为转化为研究函数的值域,分与两类情况分析可得;选项C,特值法可知;选项D,利用基本不等式求最值可得.【详解】选项A,“,使得”的否定是“,都有”,故A错误;选项B,因为函数的值域为,设函数值域为,则,当时,,值域,满足题意;当时,为二次函数,要使值域,则图象开口向上,且与轴有公共点,所以有且,解得,综上可得,即实数m的取值范围是,故B正确;选项C,当时,,但,不满足,故C错误;选项D,由,则,当且仅当,即时等号成立,故的最小值为9,故D正确.故选:BD.12.【正确答案】BC【分析】由函数的奇偶性,对称性以及周期性逐一判断选项即可得到答案.【详解】函数的定义域为,由为奇函数,得,即,由为偶函数,得,即,则,即,于是,函数是周期为的周期函数,对于A,当时,,,A错误;对于B,在上单调递增,由,知图象关于点对称,则在上单调递增,即函数在上单调递增,因此在上单调递增,B正确;对于C,由及,得,即,因此函数图象关于点对称,C正确;对于D,当时,,由函数图象关于点对称,知当时,,则当时,,由,知函数图象关于直线对称,则当时,,于是当时,,而函数的周期是,因此函数在R上的值域为,方程,即,因此的根即为函数与图象交点的横坐标,在同一坐标系内作出函数与的部分图象,如图,
观图知,与图象在上有且只有3个公共点,而当时,,即函数与图象在无公共点,所以方程仅有3个实数解,D错误.故选:BC结论点睛:函数的定义域为D,,(1)存在常数a,b使得,则函数图象关于点对称.(2)存在常数a使得,则函数图象关于直线对称.13.【正确答案】0【分析】根据对数的运算,结合换底公式进行求解即可.【详解】故014.【正确答案】【分析】根据题意可知,结合正弦函数的有界性分析求解.【详解】若“,”为真命题,则,可知当时,取到最小值,可得,所以实数a的取值范围为.故答案为.15.【正确答案】【分析】利用诱导公式化简求值即可.【详解】.故16.【正确答案】【分析】作出的图象,然后由,得或,由图象可知有3个零点,所以就有4个零点,再结合图象可求出结果.【详解】作出函数的图象如图所示,由,得或,当时,有3个零点,要使函数有7个零点,则当时,,即与有4个交点,结合图形可得,解得,即m的取值范围为故答案为.17.【正确答案】(1);(2)【分析】(1)由求出点的值,结合三角函数定义可得;(2)利用诱导公式化简可得.【详解】(1)由题意知,因角的终边与轴的正半轴重合,且终边过点,则点到原点的距离,则,;(2).18.【正确答案】(1)(2)【分析】(1)由已知设出二次函数解析式,由条件代入解析式待定系数可得;(2)分类讨论轴与区间的关系,通过函数的单调性求最值可得.【详解】(1)由题意,设函数,由对称轴为,函数在上的最大值为,可得,将点代入可得,解得,故.故函数的解析式为;(2)的对称轴为,当时,在区间单调递增,则;当,即时,在区间单调递增,在区间单调递减,故;当,即时,在区间单调递减,故;综上,的最大值.19.【正确答案】(1)(2)或【分析】(1)先化简集合,然后根据条件即可确定实数的值;(2)由条件集合知,集合中至多有2个元素,对集合中的元素个数进行分类讨论即可.【详解】(1)易知集合,由得:或,解得.(2)(1)当时满足;(2)当时①当即时,满足,.②当即时,,不满足.③当即时,满足,只能,无解.综上所述:或.20.【正确答案】(1)254小时(2)存储温度要不高于15℃【分析】(1)把给定的数对代入函数关系,求出,并确定,再求出即得.(2)利用(1)中信息,建立不等式,再借助指数函数单调性解不等式即得.【详解】(1)依题意,把,分别代入,得,于是,则,,当时,,此款鲜牛奶在0℃的保鲜时间为254小时.(2)依题意,,由(1)知,显然,于是,则,因此,而,则有,所以想要保证此款鲜牛奶的保鲜时间不少于,存储温度要不高于15℃.【一题多解】本题第(2)问,还可以采用如下解法:由(1)知,可得,,由题意知,即,所以,可得,即,又因为,所以.所以想要保证此款鲜牛奶的保鲜时间不少于,存储温度要不高于15℃.21.【正确答案】(1)(2)【分析】(1)先由奇函数解得,再将看成整体,将所求函数转化为二次函数值域求解即可;(2)将复合函数单调性利用换元法转化为余弦函数的单调性即可求解参数范围.【详解】(1)因为,由是奇函数,所以,则,解得,又,则.验证:当时,,由,得是奇函数.因为函数,由,则,所以,故当时,;当或时,.故所求函数的值域为;(2)因函数在区间和上均单调递增,令,则在区间和单调递增,故,且,解得,则实数的取值范围为.22.【正确答案】(1)详见解析;(2)不存在,理由详见解析.【分析】(1)利用函数单调性定义证明;(2)由(1)结合复合函数的单调性得到在上是增函数,从而有,转化为m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班儿童足球训练活动总结
- 现代物流管理实训案例及操作规范
- 小学数学解决应用题专项训练
- 建筑企业合同招标标准范本
- 员工离职面谈实操经验分享
- 教师岗位坐班制管理办法
- 企业内部控制合规管理手册
- 九年级语文考试模拟题汇编
- 眩晕病患者健康宣教方案与技巧
- 高铁站安全保卫工作总结报告
- 高中化学全套思维导图(高清版)
- 初中数学重要的九大几何模型
- 重点难点 议论文阅读-2024年中考语文复习专练(原卷版)
- 阅读还原六选五15篇(期中复习)八年级英语上册基础知识专项讲练(人教版)
- 人音版音乐九年级上册第1单元演唱《让世界充满爱》教案
- 2024年秋季1530安全教育记录
- 高中综合实践课程:设计未来城市(课件)
- 幼儿园班级幼儿图书目录清单(大中小班)
- 2022光储充微电网碳园区解决方案
- 2024新型电力系统源网荷储一体化白皮书
- 2020年检验检测认证企业发展战略和经营计划
评论
0/150
提交评论