四川财经职业学院《区块链技术》2023-2024学年第一学期期末试卷_第1页
四川财经职业学院《区块链技术》2023-2024学年第一学期期末试卷_第2页
四川财经职业学院《区块链技术》2023-2024学年第一学期期末试卷_第3页
四川财经职业学院《区块链技术》2023-2024学年第一学期期末试卷_第4页
四川财经职业学院《区块链技术》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页四川财经职业学院

《区块链技术》2023-2024学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在人工智能的应用中,自动驾驶是一个具有挑战性的领域。假设一辆自动驾驶汽车需要在复杂的交通环境中做出安全、高效的驾驶决策。那么,以下关于自动驾驶中的人工智能技术,哪一项是不准确的?()A.需要依靠多种传感器获取环境信息,如摄像头、激光雷达等B.基于深度学习的目标检测算法可以准确识别道路上的行人和车辆C.自动驾驶系统一旦训练完成,就不需要再进行更新和改进D.决策算法需要考虑交通规则、道德伦理等多方面因素2、在人工智能的医疗应用中,例如疾病预测和诊断辅助,假设需要确保模型的结果具有可解释性和临床可信赖性。以下哪种方法能够增加模型的可信度?()A.与医生的经验和专业知识结合进行验证B.只依靠模型的输出,不进行额外验证C.隐藏模型的内部工作原理,避免质疑D.不考虑临床实际情况,追求高准确率3、人工智能在艺术创作领域的探索引起了广泛关注。假设要利用人工智能生成音乐作品,以下关于其应用的描述,哪一项是不正确的?()A.基于深度学习算法学习大量的音乐作品,生成新的旋律和节奏B.可以与人类音乐家合作,共同创作出独特的音乐作品C.人工智能生成的音乐作品在艺术价值和创造性上能够超越人类音乐家的作品D.为音乐创作提供新的灵感和可能性,但不能完全取代人类的创造力4、知识图谱是人工智能中用于表示知识和关系的一种技术。假设一个智能问答系统基于知识图谱来回答用户的问题。以下关于知识图谱的描述,哪一项是错误的?()A.知识图谱将实体、关系和属性以图的形式组织起来,便于知识的表示和查询B.可以通过从大量文本中自动抽取信息来构建知识图谱C.知识图谱中的知识是固定不变的,一旦构建完成就无需更新D.结合自然语言处理技术,能够实现基于知识图谱的智能问答和推理5、人工智能中的强化学习算法可以用于训练机器人完成复杂的任务。假设一个机器人需要通过强化学习学会在不同地形上行走。以下关于强化学习训练机器人的描述,哪一项是不正确的?()A.机器人通过与环境的交互获得奖励或惩罚,从而调整自己的动作策略B.可以使用模拟环境进行大量的训练,以减少在真实环境中的试验成本和风险C.强化学习训练出的机器人策略在不同的环境条件下都能保持最优性能,无需进一步调整D.合理设计奖励函数对于引导机器人学习到期望的行为至关重要6、在人工智能的自动驾驶伦理问题中,例如在面临不可避免的事故时如何做出决策,以下哪种思考角度和原则可能是需要被考虑的?()A.功利主义原则B.道义论原则C.权利主义原则D.以上都是7、生成对抗网络(GAN)是一种新兴的人工智能技术。假设要使用GAN生成逼真的图像。以下关于生成对抗网络的描述,哪一项是不准确的?()A.GAN由生成器和判别器组成,两者通过对抗训练不断优化B.生成器负责生成假样本,判别器负责判断样本的真假C.GAN可以生成具有高度创造性和多样性的新数据D.GAN的训练过程非常稳定,不会出现模式崩溃等问题8、人工智能中的迁移学习方法可以利用已有的知识和模型来解决新的问题。假设要将一个在大规模图像数据集上训练好的模型应用到小样本的特定领域图像分类任务中。以下关于迁移学习的描述,哪一项是不准确的?()A.可以将预训练模型的特征提取部分应用到新任务中,并在新数据上微调B.迁移学习能够有效解决新任务数据量不足的问题,提高模型的泛化能力C.直接使用预训练模型的输出结果,无需任何调整,就能在新任务中取得好的效果D.选择合适的预训练模型和迁移策略对于迁移学习的成功至关重要9、在人工智能的研究中,算法的选择和优化至关重要。以下关于人工智能算法的叙述,不正确的是()A.不同的算法适用于不同的问题和数据特点,需要根据具体情况进行选择B.算法的优化可以提高计算效率和模型性能,例如通过调整参数、使用更高效的计算框架等C.新的算法不断涌现,但传统的算法在某些情况下仍然具有不可替代的优势D.一旦选择了一种算法,就不能再进行更改和优化,否则会影响模型的稳定性10、在人工智能的知识表示方法中,语义网络和框架表示是常见的方式。假设我们要构建一个关于动物分类的知识系统,以下关于这两种表示方法的说法,哪一项是正确的?()A.语义网络更适合表示结构化的、层次分明的知识B.框架表示难以处理知识的不确定性和模糊性C.语义网络难以表达复杂的对象及其关系D.框架表示在知识的扩展和更新方面较为困难11、人工智能中的聚类算法用于将数据分组为不同的簇。假设要对一组客户数据进行聚类分析。以下关于聚类算法的描述,哪一项是不准确的?()A.K-Means算法是一种常见的聚类算法,需要事先指定簇的数量B.聚类算法可以发现数据中的潜在模式和结构,帮助进行市场细分等应用C.不同的聚类算法在不同的数据分布和场景下表现各异,需要根据实际情况选择D.聚类结果是唯一确定的,不受算法参数和初始值的影响12、在人工智能的发展趋势中,边缘计算与人工智能的结合越来越受到关注。假设我们要在物联网设备上实现实时的人工智能推理,以下关于边缘计算与人工智能融合的描述,哪一项是不正确的?()A.可以减少数据传输延迟,提高响应速度B.能够降低对云计算中心的依赖C.边缘设备的计算能力足以处理所有复杂的人工智能任务D.需要考虑能源消耗和设备成本等因素13、人工智能中的语音识别技术正在改变人们与计算机的交互方式。假设要开发一个能够准确识别不同口音和语速的语音识别系统。以下关于语音识别的描述,哪一项是不准确的?()A.特征提取是语音识别中的关键步骤,用于将语音信号转换为可处理的特征向量B.声学模型和语言模型共同作用,提高语音识别的准确率C.语音识别系统对于背景噪音和多人同时说话的场景能够轻松应对,不受任何影响D.不断增加训练数据的多样性和规模,可以改善语音识别系统在复杂场景下的性能14、人工智能中的生成对抗网络(GAN)在图像生成、数据增强等方面表现出色。假设我们想要生成逼真的人脸图像,使用GAN来实现。那么,以下关于GAN的描述,哪一项是错误的?()A.由生成器和判别器两个部分组成,它们通过相互对抗来学习B.生成器的目标是生成尽可能逼真的假样本,以欺骗判别器C.判别器的能力越强,生成器就越难学习到有效的特征D.GAN的训练过程是稳定的,不会出现模式崩溃等问题15、人工智能在医疗领域的应用不断拓展。假设利用人工智能辅助医生进行疾病诊断,以下关于其应用的描述,哪一项是不准确的?()A.人工智能可以分析医学影像,帮助医生发现潜在的病变B.基于大数据的人工智能模型能够提供更准确的诊断建议,但不能取代医生的最终判断C.人工智能在医疗中的应用可以完全避免误诊和漏诊的情况发生D.医生和人工智能系统的合作可以提高医疗效率和质量16、生成对抗网络(GAN)是一种热门的人工智能技术。假设要使用GAN生成逼真的图像,以下关于GAN的描述,正确的是:()A.GAN由一个生成器和一个判别器组成,它们相互竞争,共同提高生成效果B.生成器的目标是尽量使生成的图像与真实图像差异增大,以迷惑判别器C.判别器的能力越强,生成器生成的图像质量就越差D.GAN只能用于图像生成,不能应用于其他领域,如音频生成17、人工智能在物流领域的应用能够提高物流效率和服务质量。以下关于人工智能在物流应用的叙述,不正确的是()A.可以通过路径规划算法优化货物运输路线,降低运输成本B.利用图像识别技术实现货物的自动分拣和识别C.人工智能在物流领域的应用面临数据安全和隐私保护等挑战D.物流领域对人工智能技术的需求不高,传统的管理方法已经足够满足需求18、在人工智能的模型评估中,假设已经有了训练集、验证集和测试集。以下关于使用这些数据集的方法,哪一项是不正确的?()A.在训练集上训练模型,在验证集上调整超参数,在测试集上评估最终模型的性能B.将训练集、验证集和测试集混合在一起进行训练,以增加数据量C.只在训练集上训练模型,然后直接在测试集上评估性能D.多次使用测试集来评估模型,以确保结果的可靠性19、人工智能在智能推荐系统中的应用越来越普遍。假设要为一个电商平台开发推荐系统,以下关于考虑用户兴趣动态变化的方法,哪一项是最重要的?()A.定期重新训练模型,以反映用户兴趣的最新变化B.只根据用户的历史购买记录进行推荐,不考虑近期行为C.为用户推荐始终不变的热门商品,不考虑其个人兴趣D.随机推荐商品,期望能够满足用户的动态兴趣20、在人工智能的自动驾驶场景中,车辆需要与周围的其他车辆和基础设施进行有效的通信和协作。假设要实现车辆之间的安全、高效的信息交互,以下哪种通信技术和协议在可靠性和低延迟方面表现最为突出?()A.4G通信B.5G通信C.车联网专用短程通信(DSRC)D.Wi-Fi通信21、在人工智能的发展过程中,可解释性是一个重要的问题。假设一个深度学习模型在医疗诊断中做出了关键决策,但无法解释其决策的依据。这可能会带来哪些潜在的风险?()A.医生可能无法信任模型的结果B.模型的准确率可能会下降C.模型的训练时间可能会增加D.模型的复杂度可能会降低22、当利用人工智能进行金融风险评估,例如评估信用风险和市场风险,以下哪种模型和特征可能是重要的组成部分?()A.逻辑回归模型和财务指标B.决策树模型和交易数据C.深度学习模型和宏观经济数据D.以上都是23、在人工智能的发展中,可解释性是一个重要的研究方向。假设一个用于信用评估的人工智能模型,以下关于模型可解释性的描述,正确的是:()A.复杂的人工智能模型不需要具备可解释性,只要预测结果准确就行B.可解释性只对研究人员有意义,对于实际应用中的用户不重要C.通过特征重要性分析和可视化等方法,可以提高人工智能模型的可解释性,增强用户对模型决策的信任D.所有的人工智能模型都可以被完全解释清楚,不存在无法解释的黑盒部分24、人工智能中的智能监控系统可以对视频内容进行分析。假设要在一个公共场所的监控系统中检测异常行为,以下哪个因素对于检测的准确性至关重要?()A.监控摄像头的分辨率B.视频数据的存储方式C.算法对异常行为的定义和建模D.网络带宽25、人工智能在医疗领域有着广泛的应用前景,例如疾病诊断、药物研发和医疗影像分析等。以下关于人工智能在医疗领域应用的描述,不正确的是()A.人工智能可以通过分析大量的医疗数据,辅助医生进行疾病的早期诊断和预测B.在药物研发中,人工智能可以加速药物筛选和优化药物配方的过程C.虽然人工智能在医疗领域有诸多应用,但它不能替代医生的专业判断和临床经验D.人工智能在医疗领域的应用已经非常成熟,不存在任何风险和挑战二、简答题(本大题共4个小题,共20分)1、(本题5分)说明人工智能在社会发展综合评估和决策支持中的作用。2、(本题5分)解释生成对抗网络的原理和应用。3、(本题5分)解释量子计算对人工智能的潜在影响。4、(本题5分)简述决策树算法的原理和应用。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)研究一个使用人工智能的智能舞蹈产业市场调研系统,分析其如何了解舞蹈市场的需求和趋势。2、(本题5分)以某智能教育软件为例,探讨人工智能在个性化学习中的作用。3、(本题5分)考察某智能城市垃圾处理系统中人工智能的应用,包括分类优化和运输调度。4、(本题5分)以某智能民间艺术市场趋势分析系统为例,探讨人工智能在市场预测和发展建议方面的作用。5、(本题5分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论