福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析_第1页
福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析_第2页
福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析_第3页
福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析_第4页
福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市文化武术学校2020年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知四棱锥P-ABCD的侧棱长均为,底面是两邻边长分别为及的矩形,则该四棱锥外接球的表面积为A.18π

B.

C.36π

D.48π参考答案:C因为四棱锥的底面为矩形,所以对角线AC为截面圆的直径。由题意得该四棱锥的外接球的球心O在截面ABC内的射影为AC的中点F,此时,则,解得。设外接球的半径为R,则,所以在中,由勾股定理得,解得,所以外接球的表面积为。选C。

2.已知复数,则的虚部是(A)

(B)

(C)

(D)

参考答案:B略3.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A. B.3 C.2 D.参考答案:A【考点】三角形中的几何计算.【分析】根据三角形的面积公式求得丨AB丨,cosA=,sinA=,求得丨AD丨,丨BD丨在△BDC中利用勾股定理即可求得BC的长度.【解答】解:在图形中,过B作BD⊥ACS△ABC=丨AB丨?丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.4.设全集U=R,集合A={},B={},则等于

(A)[-1,0)

(B)(0,5]

(C)[-1,0]

(D)[0,5]参考答案:C略5.已知|a|=1,|b|=2,向量a与b的夹角为,c=a+2b,则|c|=()A、B、C、2D、3参考答案:A.6.已知,那么下列不等式成立的是A.

B.

C.

D.参考答案:C7.当n=4时,执行如图所示的程序框图,输出S的值是()A.7 B.9 C.11 D.16参考答案:A【考点】程序框图.【专题】计算题;图表型;分析法;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的S,m的值,当m=4时,不满足条件m<4,退出循环,输出S的值,从而得解.【解答】解:模拟执行程序框图,可得n=4,m=1,S=1满足条件m<4,S=1+1=2,m=1+1=2满足条件m<4,S=2+2=4,m=2+1=3满足条件m<4,S=4+3=7,m=3+1=4不满足条件m<4,退出循环,输出S的值为7.故选:A.【点评】本题主要考查了程序框图和算法,考查了循环结构和条件语句,依次写出每次循环得到的S,m的值是解题的关键,属于基本知识的考查.8.设函数的定义域为,且满足任意恒有ks5u的函数可以是

(

)

A.

B.

C.

D.参考答案:C略9.已知抛物线x2=4y的准线经过双曲线﹣x2=1的一个焦点,则双曲线的离心率为(

) A. B. C. D.3参考答案:B考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先求出抛物线的准线方程,就可得到双曲线的焦点坐标,求出c值,再根据双曲线的标准方程,求出a值,由e=,得到双曲线的离心率.解答: 解:∵抛物线x2=4y的准线方程为y=﹣∵抛物线x2=4y的准线过双曲线﹣x2=1的一个焦点,∴双曲线的一个焦点坐标为(0.﹣),∴双曲线中c=,∵双曲线﹣x2=1,∴a2=m2,a=m,m2+1=3,解得m=,∴双曲线的离心率e===.故选:B.点评:本题主要考查双曲线的离心率的求法,关键是求a,和c的值.10.若p、q为两个命题,则“pq”为真是“pq”为真的A.充分不必要条件

B.必要不充分条件C.充要条件

D.既不充分也不必要条件参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知椭圆的左、右两个焦点分别为、,若经过的直线与椭圆相交于、两点,则△的周长等于

.参考答案:略12.(5分)阅读如图所示的程序框图,运行相应的程序,输出的S值为;参考答案:0【考点】:程序框图.【专题】:图表型;算法和程序框图.【分析】:模拟执行程序,依次写出每次循环得到的S,i的值,当i=5时,满足条件i>4,退出循环,输出S的值为0.解:模拟执行程序,可得S=1,i=1S=3,i=2,不满足条件i>4,S=4,i=3不满足条件i>4,S=1,i=4不满足条件i>4,S=0,i=5满足条件i>4,退出循环,输出S的值为0.故答案为:0.【点评】:本题主要考查了程序框图和算法,正确写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.13.若对任意,,(、)有唯一确定的,与之对应,称,为关于、的二元函数.现定义满足下列性质的二元函数为关于实数、的广义“距离”;(1)非负性:时取等号;ks5u(2)对称性:;(3)三角形不等式:对任意的实数z均成立.今给出三个二元函数,请选出所有能够成为关于、的广义“距离”的序号:①;

②;

③能够成为关于的、的广义“距离”的函数的序号是____________.参考答案:①14.已知函数若函数有3个不零点,则实数k的取值范围是

.参考答案:0<k<115.若变量x,y满足约束条件,则z=2x﹣y的最大值等于

.参考答案:6【考点】简单线性规划.【分析】作出满足不等式组的可行域,由z=2x﹣y可得y=2x﹣Z可得﹣z为该直线在y轴上的截距,截距越大,z越小,结合图形可求z的最大值【解答】解:作出不等式组所表示的平面区域,如图所示由于z=2x﹣y可得y=2x﹣z,则﹣z表示目标函数在y轴上的截距,截距越大,z越小作直线L:y=2x,然后把直线l向平域平移,由题意可得,直线平移到A时,z最大由可得C(4,2),此时z=6故答案为616.某单位为了了解用电量y(度)与气温x(°C)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x(°C)181310-1用电量y(度)24343864

由表中数据得线性回归方程中,预测当气温为时,用电量的度数约为

参考答案:略17.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=|x﹣|+|x+m|(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.参考答案:【考点】带绝对值的函数.【分析】(1)运用绝对值不等式的性质:绝对值的和不小于差的绝对值,利用基本不等式即可证得结论.(2)若f(2)>5,即|2﹣|+|2+m|>5,即有|2﹣|>3﹣m,即2﹣>3﹣m或2﹣<m﹣3.转化为二次不等式,解出即可,注意m>0.【解答】(1)证明:∵f(x)=|x﹣|+|x+m|≥|(x﹣)﹣(x+m)|=|﹣﹣m|=+m(m>0)又m>0,则+m≥4,当且仅当m=2取最小值4.∴f(x)≥4;(2)解:若f(2)>5,即|2﹣|+|2+m|>5,即有|2﹣|>3﹣m,即2﹣>3﹣m或2﹣<m﹣3.由于m>0,则m2﹣m﹣4>0或m2﹣5m+4>0,解得m>或m>4或0<m<1.故m的取值范围是(,+∞)∪(0,1).19.已知{an}是公差不为零的等差数列,满足,且、、成等比数列.(1)求数列{an}的通项公式;(2)设数列{bn}满足,求数列的前n项和Sn.参考答案:(1)设数列的公差为,且由题意得,即,解得,所以数列的通项公式.(2)由(1)得,.20.已知正三棱柱ABC﹣A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.(1)求二面角A′﹣B′C﹣C′的余弦值;(2)求线段DE的最小值.参考答案:【考点】二面角的平面角及求法.【分析】(1)由题意画出图形,以GB所在直线为x轴,以过G且垂直于BG的直线为y轴,以GA所在直线为z轴建立空间直角坐标系,求出平面B′CC′与平面A′B′C的一个法向量,由两法向量所成角的余弦值求得二面角A′﹣B′C﹣C′的余弦值;(2)设D(0,0,t)(0≤t≤),E(x,y,z),由,结合DE∥平面BCC′B′把λ用含有t的代数式表示,然后求出的最小值得答案.【解答】解:(1)如图,∵ABC﹣A′B′C′为正三棱柱,G是BC的中点,∴AG⊥平面BCC′B′,以GB所在直线为x轴,以过G且垂直于BG的直线为y轴,以GA所在直线为z轴建立空间直角坐标系,则G(0,0,0),A(0,0,),C(﹣1,0,0),B′(1,4,0),A′(0,4,),=(1,4,),,平面B′CC′的一个法向量为,设平面A′B′C的一个法向量为,由,取y=1,得x=﹣2,z=.∴,∴cos<>===.∴二面角A′﹣B′C﹣C′的余弦值为;(2)设D(0,0,t)(0≤t≤),E(x,y,z),则,∴(x+1,y,z)=(λ,4λ,),即x=λ﹣1,y=4λ,z=.∴E(λ﹣1,4λ,),=(λ﹣1,4λ,),由DE∥平面BCC′B′,得,得λ=.∴=,当t=时,有最小值,∴线段DE的最小值为.21.(本小题满分12分)已知数列中,,,其前n项和满足,令。(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前n项和。参考答案:解:(Ⅰ)由题意知()即检验知、2时,结论也成立,故(Ⅱ)由于故

略22.已知函数(m为常数,e=2.71828…是自然对数的底数),函数的最小值为1,其中是函数f(x)的导数.(1)求m的值.(2)判断直线y=e是否为曲线f(x)的切线,若是,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论