




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年统编版2024高二数学下册月考试卷12考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共5题,共10分)1、【题文】.sin330°等于()A.B.C.D.2、命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0B.1C.2D.33、如图中的网格纸是边长为1的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.12B.8C.6D.44、要完成下列两项调查:
(1)某社区有100户高收入家庭;210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;
(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况.
应采取的抽样方法是()A.(1)用系统抽样法,(2)用简单随机抽样法B.(1)用分层抽样法,(2)用系统抽样法C.(1)用分层抽样法,(2)用简单随机抽样法D.(1)(2)都用分层抽样法5、已知|z1|=|z2|=|z1-z2|=1,则|z1+z2|等于()A.1B.C.D.2评卷人得分二、填空题(共6题,共12分)6、短轴长为离心率e=的椭圆的两焦点为F1、F2,过F1作直线交椭圆于A、B两点,则△ABF2周长为_____________。7、【题文】已知点P的坐标满足过点P的直线l与圆相交于A、B两点,则AB的最小值为____.8、【题文】若内一点满足则类比以上。
推理过程可得如下命题:若四面体内一点满足
则____.9、【题文】已知函数()的一段图象如图所示;
则函数的解析式为____
10、【题文】等比数列的各项均为正数,前四项之积等于64,那么的最小值等于____。11、已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为____.评卷人得分三、作图题(共5题,共10分)12、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
13、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)14、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
15、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)16、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共3题,共9分)17、设L为曲线C:y=在点(1,0)处的切线.求L的方程;18、解不等式组.19、在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.评卷人得分五、综合题(共3题,共15分)20、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.21、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.22、已知f(x)=logax(a>0,a≠1),设数列f(a1),f(a2),f(a3),,f(an)是首项为4,公差为2的等差数列.参考答案一、选择题(共5题,共10分)1、B【分析】【解析】解:因为sin330°=-sin30°=选B【解析】【答案】B2、C【分析】【解答】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;
故其逆否命题也为真命题;
其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立;故为假命题。
故其否命题也为假命题。
故原命题及其逆命题;否命题、逆否命题中;真命题的个数为2个。
故选C
【分析】根据不等式的基本性质可以判断出原命题及逆命题的真假,进而根据互为逆否的两个命题真假性相同,可得答案.3、A【分析】解:由俯视图可知四棱锥底面为矩形;边长为2和6;
由正视图和侧视图可知四棱锥的高为3;
∴四棱锥的体积.
故选A.
四棱锥的底面为矩形;高为3,代入体积公式计算即可.
本题考查了棱锥的三视图与体积计算,属于基础题.【解析】【答案】A4、C【分析】解:(1)由于家庭收入差异较大;故(1)应该使用分层抽样.
(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况;由于人数较少,故使用简单随机抽样;
故选:C
根据抽样的定义分别进行判断即可.
本题主要考查抽样的应用,根据抽样的定义分别进行判断是解决本题的关键.比较基础.【解析】【答案】C5、C【分析】解:z1+z2、z1-z2的几何意义是以z1、z2为邻边的平行四边形的二对角线;
依平行四边形的性质:对角线的平方和等于四条边的平方和,有|z1+z2|2+|z1-z2|2=2(|z1|2+|z2|2);
则有|z1+z2|2=2(|z1|2+|z2|2)-|z1-z2|2=3
即|z1+z2|=
故选C.
根据复数、复数加减法的几何意义,与平行四边形的性质:对角线的平方和等于四条边的平方和,可得|z1+z2|2=2(|z1|2+|z2|2)-|z1-z2|2;代入数据,计算可得答案.
本题考查复数的几何意义与模的计算,联系几何意义,发现|z1-z2|与|z1+z2|的关系,是解题的关键.【解析】【答案】C二、填空题(共6题,共12分)6、略
【分析】【解析】试题分析:根据题意,由于短轴长为离心率e=则可知b=那么结合解得a=3,那么根据椭圆定义可知,∵过点F1作直线l交椭圆于A、B两点,∴△ABF2的周长为4a=12,故答案为12.考点:椭圆的定义【解析】【答案】127、略
【分析】【解析】
试题分析:要使弦AB最短,则弦心距最大,根据图像知点到圆心的距离最大,则圆的半径为∴故填4.
考点:1.线性规划;2.两点间距离公式;3.弦心距问.【解析】【答案】48、略
【分析】【解析】解:因为若内一点满足则类比以上推理过程可得如下命题:若四面体内一点满足
则【解析】【答案】9、略
【分析】【解析】略【解析】【答案】10、略
【分析】【解析】解答:因为等比数列的各项均为正数,由基本不等式可知当且仅当时等号成立。由等比数列的性质,所以所以即
故答案为16【解析】【答案】1611、x2+y2+x﹣y+=0【分析】【解答】解:可设圆的方程为x2+y2+2x﹣4y+λ(2x+y+4)=0;
即x2+y2+2(1+λ)x+(λ﹣4)y+4λ=0;
此时圆心坐标为(﹣1﹣λ,);
显然当圆心在直线2x+y+4=0上时;圆的半径最小,从而面积最小;
∴2(﹣1﹣λ)++4=0;
解得:λ=
则所求圆的方程为:x2+y2+x﹣y+=0.
故答案为:x2+y2+x﹣y+=0.
【分析】设出所求圆的方程为x2+y2+2x﹣4y+λ(2x+y+4=0)=0,找出此时圆心坐标,当圆心在直线2x+y+4=0上时,圆的半径最小,可得此时面积最小,把表示出的圆心坐标代入2x+y+4=0中,得到关于λ的方程,求出方程的解得到λ的值,进而确定出所求圆的方程.三、作图题(共5题,共10分)12、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
13、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.14、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
15、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.16、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共3题,共9分)17、解:所以当x=1时,k=点斜式得直线方程为y=x-1【分析】【分析】函数的导数这是导函数的除法运算法则18、解:由{#mathml#}x+3x+1
{#/mathml#}≤2得:{#mathml#}x−1x+1
{#/mathml#}≥0,解得x<﹣1或x≥1;由x2﹣6x﹣8<0得:3﹣{#mathml#}17
{#/mathml#}<x<3+{#mathml#}17
{#/mathml#},
∴不等式组得解集为(3﹣{#mathml#}17
{#/mathml#},﹣1)∪[1,3+{#mathml#}17
{#/mathml#})【分析】【分析】分别解不等式≤2与x2﹣6x﹣8<0,最后取其交集即可.19、解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:C63C40=20.f(3,0)=20;含x2y1的系数是C62C41=60;f(2,1)=60;
含x1y2的系数是C61C42=36;f(1,2)=36;
含x0y3的系数是C60C43=4;f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120【分析】【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.五、综合题(共3题,共15分)20、略
【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F点的纵坐标是b,即FM=b,则得到AF=b,同理BE=a,根据(a,b)是函数y=的图象上的点,因而b=,ab=,则即可求出AF•BE.【解析】【解答】解:∵P的坐标为(a,);且PN⊥OB,PM⊥OA;
∴N的坐标为(0,);M点的坐标为(a,0);
∴BN=1-;
在直角三角形BNF中;∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形);
∴NF=BN=1-;
∴F点的坐标为(1-,);
∵OM=a;
∴AM=1-a;
∴EM=AM=1-a;
∴E点的坐标为(a;1-a);
∴AF2=(-)2+()2=,BE2=(a)2+(-a)2=2a2;
∴AF•BE=1.
故答案为:1.21、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;0),(0,3);
得
解这个方程组,得
∴直线BC的解析式为y=-x+3.(6分)
由(1)知:对称轴l为;即x=1.
将x=1代入y=-x+3;得y=-1+3=2.
∴点D的坐标为(1;2).(7分)
说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).
(3)①连接AD.设直线l与x轴的交点记为点E.
由(2)知:当AD+CD最小时;点D的坐标为(1,2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国氧化锡项目投资计划书
- 拆迁合同补偿协议书范本
- 柔性电子材料项目创业计划书
- 淘宝客服2025年工作计划书(新版)
- 文化墙制作合同协议书
- 简单工程合同协议书范本
- 滤油机维修合同协议书
- 意向协议书是预约合同
- 2025年汽车检具市场调查报告
- 简单员工合同协议书下载
- 福建省莆田市2025届高三下学期第四次教学质量检测试生物试题(含答案)
- 2025年4月自考00522英语国家概况答案及评分参考
- 2025人教版三年级下册数学第七单元达标测试卷(含答案)
- 2025年安全生产月主题培训课件:如何查找身边安全隐患
- 2024年宁夏银川公开招聘社区工作者考试试题答案解析
- 2025年注册建筑师建筑防水设计试题试卷
- 大巴车驾驶员安全培训
- 量化投资与多资产组合管理-全面剖析
- 夜间行车培训课件
- 楼房分层使用协议书
- 模块二 专题三 电学专题(四):电学比值类计算 课件北京东直门中学2025年中考物理一轮复习
评论
0/150
提交评论