湖北生物科技职业学院《设计思维与方法》2023-2024学年第二学期期末试卷_第1页
湖北生物科技职业学院《设计思维与方法》2023-2024学年第二学期期末试卷_第2页
湖北生物科技职业学院《设计思维与方法》2023-2024学年第二学期期末试卷_第3页
湖北生物科技职业学院《设计思维与方法》2023-2024学年第二学期期末试卷_第4页
湖北生物科技职业学院《设计思维与方法》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

装订线装订线PAGE2第1页,共3页湖北生物科技职业学院《设计思维与方法》

2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要对一段视频中的物体运动进行分析,以下关于光流估计的描述,正确的是:()A.稀疏光流估计只计算图像中部分特征点的运动,无法反映整体的运动趋势B.稠密光流估计能够得到图像中每个像素的运动向量,但计算复杂度较高C.光流估计的结果不受光照变化和噪声的影响,具有很高的准确性D.光流估计只能用于分析匀速直线运动的物体,对于复杂的运动模式无法处理2、在计算机视觉的图像去雾任务中,假设要去除一张有雾图像中的雾气,恢复清晰的场景。以下关于图像去雾方法的描述,正确的是:()A.基于物理模型的去雾方法需要准确估计雾的浓度和传播参数,否则效果不佳B.基于深度学习的去雾方法能够自动学习雾的特征,但对浓雾的处理能力有限C.图像去雾后,颜色和对比度会发生严重失真,影响视觉效果D.所有的图像去雾方法都能够在各种复杂的雾天条件下取得理想的效果3、计算机视觉中,以下哪个任务通常需要对图像中的目标进行定位和分类?()A.图像生成B.目标检测C.图像超分辨率D.图像去噪4、在计算机视觉的发展中,模型的可解释性是一个重要的研究方向。以下关于模型可解释性的描述,不准确的是()A.模型可解释性旨在理解模型是如何做出决策和生成输出的B.可解释性对于建立用户对模型的信任和确保模型的公正性具有重要意义C.一些可视化技术,如特征图可视化和类激活映射,可以帮助解释模型的决策过程D.目前的计算机视觉模型都具有良好的可解释性,能够清晰地解释其决策依据5、在计算机视觉的图像增强处理中,目的是改善图像的质量和可读性。假设我们要对一张低光照条件下拍摄的图像进行增强,以下关于图像增强方法的描述,哪一项是不正确的?()A.直方图均衡化可以通过调整图像的灰度分布,增强图像的对比度B.基于Retinex理论的方法可以分离图像的光照和反射成分,从而改善图像的视觉效果C.图像增强算法可以在不增加噪声的情况下,显著提高图像的亮度和清晰度D.不同的图像增强方法适用于不同类型的图像,需要根据具体情况选择合适的方法6、在计算机视觉的目标跟踪任务中,需要持续跟踪一个或多个运动目标。假设要跟踪一个在操场上跑步的人。以下关于目标跟踪算法的描述,哪一项是不正确的?()A.可以基于特征匹配的方法,在连续的帧中找到目标的相似特征来实现跟踪B.深度学习中的相关滤波算法能够快速准确地跟踪目标,适应目标的外观变化C.目标跟踪算法能够在目标被遮挡或短暂消失后,仍然准确地恢复跟踪D.无论目标的运动速度和轨迹如何复杂,目标跟踪算法都能完美地跟踪7、物体检测是计算机视觉中的一项关键任务。假设一个智能监控系统需要检测场景中的特定物体,如背包、自行车等。以下关于物体检测算法的描述,哪一项是不正确的?()A.基于深度学习的物体检测算法能够同时检测多个物体,并给出它们的位置和类别B.可以通过滑动窗口的方法在图像中搜索可能的物体区域,然后进行分类判断C.物体检测算法需要对大量的标注图像进行训练,以学习不同物体的特征D.无论物体的大小、形状和颜色如何变化,物体检测算法都能准确检测到8、计算机视觉中的光流估计用于计算图像中像素的运动信息。假设要估计一段视频中物体的运动速度和方向,以下关于光流估计方法的描述,正确的是:()A.传统的基于梯度的光流估计方法在复杂场景中能够准确计算光流B.深度学习中的光流估计网络不需要大量的标注数据进行训练C.光流估计的结果不受图像噪声和模糊的影响D.结合时空信息的深度学习光流估计方法能够提高估计的准确性和鲁棒性9、在计算机视觉的研究中,数据集的质量和规模对模型的训练和性能评估至关重要。以下关于数据集的描述,不准确的是()A.大规模、多样化和标注准确的数据集有助于训练出泛化能力强的模型B.一些公开的数据集如ImageNet、COCO等为计算机视觉研究提供了重要的基准C.数据集的构建需要耗费大量的时间和人力,但可以通过数据增强技术来减少对原始数据的需求D.数据集一旦构建完成,就不需要再进行更新和扩展,能够一直满足研究的需求10、在计算机视觉的立体视觉中,需要通过两个或多个相机获取的图像来计算深度信息。假设要为一个自动驾驶汽车构建立体视觉系统,以测量与前方障碍物的距离,同时要考虑实时性和准确性的要求。以下哪种立体匹配算法在这种应用场景中表现最优?()A.基于区域的匹配B.基于特征的匹配C.基于深度学习的匹配D.全局优化匹配11、假设要开发一个能够在低光照条件下清晰拍摄并处理图像的计算机视觉系统,以下哪种图像增强方法可能有助于改善图像质量?()A.直方图均衡化B.伽马校正C.暗通道先验去雾D.以上都是12、在计算机视觉的三维重建任务中,需要从多视角的图像中恢复物体的三维形状。假设我们有一组从不同角度拍摄的建筑物图像,以下哪种方法常用于从这些图像中重建建筑物的三维模型?()A.立体匹配方法B.结构光方法C.运动恢复结构(SFM)D.基于投影的方法13、假设要开发一个能够对文物进行数字化保护和修复的计算机视觉系统,需要对文物的破损部分进行准确识别和重建。以下哪种技术在文物修复方面可能具有应用潜力?()A.图像修复算法B.三维重建技术C.虚拟增强现实技术D.以上都是14、在计算机视觉的医学图像分析中,例如对肿瘤的检测和分割。假设医学图像的质量较差,存在噪声和伪影,以下哪种预处理方法可能有助于提高后续分析的准确性?()A.图像平滑B.图像锐化C.图像二值化D.图像翻转15、计算机视觉中的深度估计是确定场景中物体距离相机的远近。假设要为机器人导航提供深度信息,以下关于深度估计方法的精度要求,哪一项是最为关键的?()A.能够区分不同物体的大致距离范围即可B.提供精确到毫米级别的深度信息,确保机器人安全导航C.深度估计的精度对机器人导航影响不大,可以忽略D.精度要求取决于机器人的运动速度,速度越快要求精度越低16、在计算机视觉的无人驾驶领域,环境感知是关键环节。假设要让无人驾驶汽车准确感知周围的道路状况、车辆和行人,同时要应对恶劣天气和复杂交通场景。以下哪种环境感知技术在这种高要求的应用中发挥着重要作用?()A.激光雷达感知B.摄像头视觉感知C.毫米波雷达感知D.以上技术融合感知17、在计算机视觉的视觉跟踪任务中,目标在运动过程中可能会发生形变、遮挡和光照变化等情况。为了提高跟踪的稳定性和准确性,以下哪种策略可能是有效的?()A.模型更新机制B.多特征融合C.抗遮挡处理D.以上都是18、计算机视觉中的行人重识别是在不同摄像头拍摄的图像或视频中识别出特定的行人。以下关于行人重识别的叙述,不正确的是()A.行人重识别需要提取具有判别性的行人特征,克服视角、光照和姿态的变化B.深度学习方法在行人重识别任务中取得了显著的性能提升C.行人重识别在智能安防、视频监控和人员追踪等领域有重要的应用D.行人重识别技术已经能够在大规模数据集上达到100%的准确率19、当利用计算机视觉进行视频监控中的异常行为检测,例如打架、盗窃等,以下哪种方法可能有助于准确识别异常行为?()A.建立正常行为模型B.运动轨迹分析C.人群密度估计D.以上都是20、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索21、计算机视觉中的图像超分辨率技术用于提高图像的分辨率。假设要将一张低分辨率的图像恢复成高分辨率图像,以下关于图像超分辨率方法的描述,正确的是:()A.基于插值的图像超分辨率方法能够生成清晰逼真的高分辨率图像B.深度学习中的生成对抗网络(GAN)在图像超分辨率任务中无法发挥作用C.图像超分辨率的效果不受原始低分辨率图像的质量和内容的限制D.结合先验知识和深度学习的方法可以改善图像超分辨率的效果22、在计算机视觉的图像分类任务中,假设数据集存在类别不平衡问题,某些类别的样本数量远远少于其他类别。以下哪种方法可以缓解这种不平衡对分类模型的影响?()A.对少数类进行过采样或对多数类进行欠采样B.只使用多数类的样本进行训练C.不考虑类别不平衡,直接训练模型D.随机选择样本进行训练23、在计算机视觉的应用于自动驾驶领域,需要实时检测道路上的交通标志和标线。假设车辆在高速行驶中,以下哪种技术能够快速准确地检测到各种交通标志,并且对光照变化和遮挡具有较强的鲁棒性?()A.基于颜色和形状特征的检测方法B.基于深度学习的检测方法,结合多尺度特征C.基于边缘检测和形态学操作的方法D.基于模板匹配和特征点匹配的方法24、在计算机视觉中,图像检索是根据用户的需求从图像数据库中查找相关的图像。以下关于图像检索的说法,错误的是()A.图像检索可以基于图像的内容,如颜色、形状和纹理等特征B.深度学习方法可以学习到更具语义的图像表示,提高图像检索的准确性C.图像检索在电子商务、数字图书馆和图像搜索引擎等领域有广泛的应用D.图像检索的性能只取决于图像特征的提取,与数据库的组织和索引无关25、计算机视觉在无人驾驶中的应用需要应对各种复杂的环境和情况。假设无人驾驶汽车要在恶劣天气下行驶,以下关于计算机视觉在无人驾驶中的挑战的描述,哪一项是不正确的?()A.恶劣天气会影响图像的质量和清晰度,增加目标检测和识别的难度B.计算机视觉系统需要与其他传感器(如雷达和超声波传感器)融合,以提高在恶劣天气下的感知能力C.深度学习模型在恶劣天气条件下的性能会显著下降,无法正常工作D.针对恶劣天气,可以通过数据增强和模型优化等方法提高计算机视觉系统的鲁棒性二、简答题(本大题共4个小题,共20分)1、(本题5分)计算机视觉中如何进行人脸识别?2、(本题5分)简述计算机视觉在商标服务中的应用。3、(本题5分)简述图像的色彩管理技术。4、(本题5分)解释计算机视觉在保险理赔中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)选取某大学的学术研讨会宣传册设计,分析其如何运用视觉元素传达研讨会主题和吸引学者参加。2、(本题5分)解析某科技公司的产品发布会舞台设计,探讨其如何通过视觉效果、演讲展示、互动环节展示产品的创新和优势,吸引媒体和消费者关注。3、(本题5分)一款化妆品的广告视频以明星代言和特效场景为亮点。请剖析此广告视频在视觉效果、明星形象与产品结合以及品牌传播方面的成功策略,以及对消费者购买决策的影响。4、(本题5分)研究某体育赛事的奖牌设计,剖析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论