版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈、襄阳市2023届高三第二学期第二次月考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数,则()A.函数在上单调递增 B.函数在上单调递减C.函数图像关于对称 D.函数图像关于对称3.已知,则下列不等式正确的是()A. B.C. D.4.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.5.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.6.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.7.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.1208.双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为()A. B.3 C. D.29.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是()A.小王或小李 B.小王 C.小董 D.小李10.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离11.如图,长方体中,,,点T在棱上,若平面.则()A.1 B. C.2 D.12.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数a,b,c满足,则的最小值是______.14.如图,某地一天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为______________.15.在的展开式中,的系数为______用数字作答16.设函数满足,且当时,又函数,则函数在上的零点个数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.18.(12分)已知函数,.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在上的最小值;(Ⅲ)若函数,当时,的最大值为,求证:.19.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.(Ⅰ)证明:;(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.20.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,,,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型,,合格的概率分别为,,,第二次检测时,三类剂型,,合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后,,三类剂型合格的种类数为,求的数学期望.附:(1)相关系数(2),,,.21.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分别是AC,B1C1的中点.求证:(1)MN∥平面ABB1A1;(2)AN⊥A1B.22.(10分)已知抛物线与直线.(1)求抛物线C上的点到直线l距离的最小值;(2)设点是直线l上的动点,是定点,过点P作抛物线C的两条切线,切点为A,B,求证A,Q,B共线;并在时求点P坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.2.C【解析】
依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.3.D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.4.A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.5.A【解析】
分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。6.D【解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.7.B【解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.8.A【解析】
设,直线的方程为,联立方程得到,,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.9.D【解析】
根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.10.B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r11.D【解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.【详解】长方体中,,点T在棱上,若平面.则,则,所以,则,所以,故选:D.【点睛】本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.12.D【解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.【点睛】本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.14.,【解析】
根据图象得出该函数的最大值和最小值,可得,,结合图象求得该函数的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,,,,,从题图中可以看出,从时是函数的半个周期,则,.又,,得,取,所以,.故答案为:,.【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.15.1【解析】
利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.【详解】二项展开式的通项为令得的系数为故答案为1.【点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.16.1【解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见详解;(2)【解析】
(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又//,则于点H,则由直二面角可知面,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于.因为//,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,,在中,.所以与面所成角的正弦值为.【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.18.(Ⅰ)(Ⅱ)见解析;(Ⅲ)见解析.【解析】试题分析:(Ⅰ)由题,所以故,,代入点斜式可得曲线在处的切线方程;(Ⅱ)由题(1)当时,在上单调递增.则函数在上的最小值是(2)当时,令,即,令,即(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,由的单调性可得在上的最小值是(iii)当,即时,在上单调递减,在上的最小值是(Ⅲ)当时,令,则是单调递减函数.因为,,所以在上存在,使得,即讨论可得在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以由此可证试题解析:(Ⅰ)因为函数,且,所以,所以所以,所以曲线在处的切线方程是,即(Ⅱ)因为函数,所以(1)当时,,所以在上单调递增.所以函数在上的最小值是(2)当时,令,即,所以令,即,所以(i)当,即时,在上单调递增,所以在上的最小值是(ii)当,即时,在上单调递减,在上单调递增,所以在上的最小值是(iii)当,即时,在上单调递减,所以在上的最小值是综上所述,当时,在上的最小值是当时,在上的最小值是当时,在上的最小值是(Ⅲ)因为函数,所以所以当时,令,所以是单调递减函数.因为,,所以在上存在,使得,即所以当时,;当时,即当时,;当时,所以在上单调递增,在上单调递减.所以当时,取得最大值是因为,所以因为,所以所以19.(Ⅰ)证明见解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因为是的中点,即得证;(Ⅱ)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.【详解】(Ⅰ)如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.(Ⅱ)由条件可知,,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,,,,,,,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30°所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.20.(1)0.98;可用线性回归模型拟合.(2)【解析】
(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,,三类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年贵州护理职业技术学院单招职业适应性考试模拟试题及答案解析
- 2026年漳州科技学院单招职业适应性考试模拟试题及答案解析
- 医疗卫生政策与疾病预防与疾病预防与疾病预防与护理
- 2026年无锡城市职业技术学院单招职业适应性测试模拟试题及答案解析
- 2026年贵州城市职业学院单招职业适应性测试模拟试题及答案解析
- 医疗护理教育与培训人才培养
- 医疗信息化在医疗数据管理中的应用
- 机械专业认知实习报告5篇
- 汽车4s店实习工作总结
- 2026年教师资格证(历史教学能力)考试题及答案
- 入暗股合同范本
- 2026年国家电网招聘之通信类考试题库300道带答案(考试直接用)
- 中国私人诊所行业投资分析、市场运行态势研究报告-智研咨询发布(2025版)
- T-DGGC 015-2022 盾构机组装、调试及验收技术标准
- 驾驶员年度安全培训计划
- 消防器材检查记录表
- 中华人民共和国建筑法
- 完整版:美制螺纹尺寸对照表(牙数、牙高、螺距、小径、中径外径、钻孔)
- AC-20C沥青混合料生产配合比以及配合比的验证报告
- 人文英语4-机考题库及答案
- 体检中心医护培训课件
评论
0/150
提交评论