




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省昆明市官渡区下学期高三数学试题第二次适应性测试试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.是平面上的一定点,是平面上不共线的三点,动点满足,,则动点的轨迹一定经过的()A.重心 B.垂心 C.外心 D.内心2.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为()A.3 B.2 C.1 D.03.不等式组表示的平面区域为,则()A., B.,C., D.,4.已知函数满足,当时,,则()A.或 B.或C.或 D.或5.已知四棱锥中,平面,底面是边长为2的正方形,,为的中点,则异面直线与所成角的余弦值为()A. B. C. D.6.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.7.已知向量,,且,则()A. B. C.1 D.28.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.369.已知命题,且是的必要不充分条件,则实数的取值范围为()A. B. C. D.10.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.11.一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半.若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为()A. B. C. D.12.设命题:,,则为A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,且,则实数m的值是________.14.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数15.已知平面向量,,且,则向量与的夹角的大小为________.16.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别为,其中,.(1)求角的值;(2)若,,为边上的任意一点,求的最小值.18.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.19.(12分)设,,其中.(1)当时,求的值;(2)对,证明:恒为定值.20.(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.21.(12分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
解出,计算并化简可得出结论.【详解】λ(),∴,∴,即点P在BC边的高上,即点P的轨迹经过△ABC的垂心.故选B.【点睛】本题考查了平面向量的数量积运算在几何中的应用,根据条件中的角计算是关键.2.C【解析】
根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③.【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故③为假命题.故选:.【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.3.D【解析】
根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,
设,则,的几何意义为直线在轴上的截距的2倍,
由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;
设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.4.C【解析】
简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.5.B【解析】
由题意建立空间直角坐标系,表示出各点坐标后,利用即可得解.【详解】平面,底面是边长为2的正方形,如图建立空间直角坐标系,由题意:,,,,,为的中点,.,,,异面直线与所成角的余弦值为即为.故选:B.【点睛】本题考查了空间向量的应用,考查了空间想象能力,属于基础题.6.C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.7.A【解析】
根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.8.D【解析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.9.D【解析】
求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即:,是的必要不充分条件,,,解得.实数的取值范围为.故选:.【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验.10.D【解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.11.B【解析】
根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论.【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题.12.D【解析】
直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】
根据即可得出,从而求出m的值.【详解】解:∵;∴;∴m=1.故答案为:1.【点睛】本题考查向量垂直的充要条件,向量数量积的坐标运算.14.12【解析】
画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【点睛】本题考查线性规划的简单应用,属于基础题.15.【解析】
由,解得,进而求出,即可得出结果.【详解】解:因为,所以,解得,所以,所以向量与的夹角的大小为.都答案为:.【点睛】本题主要考查平面向量的运算,平面向量垂直,向量夹角等基础知识;考查运算求解能力,属于基础题.16.【解析】
设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程.【详解】解:设以直线为渐近线的双曲线的方程为,∵双曲线经过抛物线焦点,∴,∴双曲线方程为,故答案为:.【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2).【解析】
(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中,由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【详解】(1),,由题知,,则,则,,;(2)在中,由余弦定理得,,设,其中.在中,,,,,所以,,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.18.(1);(2).【解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴【点睛】本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.19.(1)1(2)1【解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值.详解:(1)当时,,又,所以.(2)即,由累乘可得,又,所以.即恒为定值1.点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解.由于运算量较大,解题时要注意运算的准确性,避免出现错误.20.(1)见解析;(2)【解析】
(1)根据面面垂直性质及线面垂直性质,可证明;由所给线段关系,结合勾股定理逆定理,可证明,进而由线面垂直的判定定理证明平面.(2)建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角的大小.【详解】(1)证明:∵平面平面ABEG,且,∴平面,∴,由题意可得,∴,∵,且,∴平面.(2)如图所示,建立空间直角坐标系,则,,,,,,.设平面的法向量是,则,令,,由(1)可知平面的法向量是,∴,由图可知,二面角为钝二面角,所以二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.21.(1)见解析;(2)【解析】
(1)取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2)以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即可.【详解】(1)证明:如图,取的中点,连接.又为的中点,则是的中位线.所以且.又且,所以且.所以四边形是平行四边形.所以.因为,为的中点,所以.因为,所以.因为平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知两两互相垂直,所以分别以所在的直线为轴建立如图所示的空间直角坐标系:因为,所以点.则.设平面的法向量为,由,得,令,得平面的一个法向量为;显然平面的一个法向量为;设二面角的大小为,则.故二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城管历年笔试试题及答案
- 2025年大学生业务技能竞赛题库
- 2025年低级钳工考试题及答案
- 2025年宝马中国笔试题及答案
- 2025年中级财管测试题库及答案
- 2024年起重机司机(限桥式起重机)证考试题库及解析
- 2025年危险化学品经营单位主要负责人考试试题附答案
- 2025年成人逻辑笔试题目及答案
- 2025年医院应知应会竞赛题库
- 2025年秋招:会计岗笔试题库及答案
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 食材配送服务方案投标方案【修订版】(技术标)
- 四川省成都市青羊区石室联中学2023-2024学年八下物理期末监测模拟试题及答案解析
- DB32T 4400-2022《饮用水次氯酸钠消毒技术规程》
- 员工降本增效培训课件
- 饰面大理石项目投资计划书
- 预制菜工厂数字化手册
- 断路器保护-培训
- 2020年高考全国乙卷英语试卷
- 移动机器人SLAM技术 课件 【ch05】移动机器人路径规划
- 新概念英语第一册课文版
评论
0/150
提交评论