版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市吉化一中2025届高三下学期3月开学数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若(),,则()A.0或2 B.0 C.1或2 D.12.的展开式中的项的系数为()A.120 B.80 C.60 D.403.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.612424.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.5.已知复数满足,则的共轭复数是()A. B. C. D.6.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是()A. B.C. D.7.函数图象的大致形状是()A. B.C. D.8.△ABC的内角A,B,C的对边分别为,已知,则为()A. B. C.或 D.或9.设i为虚数单位,若复数,则复数z等于()A. B. C. D.010.已知斜率为的直线与双曲线交于两点,若为线段中点且(为坐标原点),则双曲线的离心率为()A. B.3 C. D.11.小张家订了一份报纸,送报人可能在早上之间把报送到小张家,小张离开家去工作的时间在早上之间.用表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为,小张离开家的时间为,看成平面中的点,则用几何概型的公式得到事件的概率等于()A. B. C. D.12.设分别为的三边的中点,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知无盖的圆柱形桶的容积是立方米,用来做桶底和侧面的材料每平方米的价格分别为30元和20元,那么圆桶造价最低为________元.14.设常数,如果的二项展开式中项的系数为-80,那么______.15.已知函数的最大值为3,的图象与y轴的交点坐标为,其相邻两条对称轴间的距离为2,则16.在平行四边形中,已知,,,若,,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,且,,成等比数列.(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,,求数列的前n项和.18.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19.(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.20.(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.21.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.22.(10分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
利用复数的模的运算列方程,解方程求得的值.【详解】由于(),,所以,解得或.故选:A【点睛】本小题主要考查复数模的运算,属于基础题.2、A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.3、C【解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。4、B【解析】
根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【详解】根据“斜二测画法”可得,,,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.5、B【解析】
根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以.故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.6、A【解析】
由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【点睛】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.7、B【解析】
判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.8、D【解析】
由正弦定理可求得,再由角A的范围可求得角A.【详解】由正弦定理可知,所以,解得,又,且,所以或。故选:D.【点睛】本题主要考查正弦定理,注意角的范围,是否有两解的情况,属于基础题.9、B【解析】
根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.10、B【解析】
设,代入双曲线方程相减可得到直线的斜率与中点坐标之间的关系,从而得到的等式,求出离心率.【详解】,设,则,两式相减得,∴,.故选:B.【点睛】本题考查求双曲线的离心率,解题方法是点差法,即出现双曲线的弦中点坐标时,可设弦两端点坐标代入双曲线方程相减后得出弦所在直线斜率与中点坐标之间的关系.11、D【解析】
这是几何概型,画出图形,利用面积比即可求解.【详解】解:事件发生,需满足,即事件应位于五边形内,作图如下:故选:D【点睛】考查几何概型,是基础题.12、B【解析】
根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设桶的底面半径为,用表示出桶的总造价,利用基本不等式得出最小值.【详解】设桶的底面半径为,高为,则,故,圆通的造价为解法一:当且仅当,即时取等号.解法二:,则,令,即,解得,此函数在单调递增;令,即,解得,此函数在上单调递减;令,即,解得,即当时,圆桶的造价最低.所以故答案为:【点睛】本题考查了基本不等式的应用,注意验证等号成立的条件,属于基础题.14、【解析】
利用二项式定理的通项公式即可得出.【详解】的二项展开式的通项公式:,令,解得.∴,解得.故答案为:-2.【点睛】本小题主要考查根据二项式展开式的系数求参数,属于基础题.15、【解析】,由题意,得,解得,则的周期为4,且,所以.考点:三角函数的图像与性质.16、【解析】
设,则,得到,,利用向量的数量积的运算,即可求解.【详解】由题意,如图所示,设,则,又由,,所以为的中点,为的三等分点,则,,所以.【点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)因为,所以,所以,所以数列是等差数列,设数列的公差为,由可得,因为成等比数列,所以,所以,所以,因为,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.18、(1)(2)【解析】
(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2)由的几何意义得,.将代入抛物线C的方程,利用韦达定理,,即可求得结果.【详解】(1)因为,,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.19、(1)(2)证明见解析【解析】
(1)利用与的关系即可求解.(2)利用裂项求和法即可求解.【详解】解析:(1)当时,;当,,可得,又∵当时也成立,;(2),【点睛】本题主要考查了与的关系、裂项求和法,属于基础题.20、(1);(2).【解析】
试题分析:(1)由题意可得函数f(x)的解析式为,则.(2)整理函数h(x)的解析式可得:,结合函数的定义域可得函数的值域为.试题解析:(1)由函数取得最大值1,可得,函数过得,,∵,∴,.(2),,,值域为.21、(1)(2)【解析】
(1)由,可求,然后由时,可得,根据等比数列的通项可求(2)由,而,利用裂项相消法可求.【详解】(1)当时,,解得,当时,①②②①得,即,数列是以2为首项,2为公比的等比数列,;(2)∴,∴,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年滁州市第一幼儿园招聘2名笔试备考试题及答案解析
- 2026年云南新兴职业学院单招综合素质考试模拟试题含详细答案解析
- 2026年吉林省省直事业单位公开招聘工作人员(3号)(111人)笔试备考题库及答案解析
- 2026安徽芜湖市奇瑞汽车招聘笔试备考试题及答案解析
- 2026年合肥市蜀山区公立幼儿园多名工勤岗位招聘笔试备考试题及答案解析
- 4.7.3 用药与急救 教学设计(2025-2026学年人教版生物八年级上册)
- 2026上半年陕西事业单位联考咸阳市招聘391人笔试备考试题及答案解析
- 2026广西南宁市江南区吴圩镇初级中学春季学期编外教师招聘笔试备考题库及答案解析
- 2026江苏南京大学医学院技术管理招聘笔试备考试题及答案解析
- 2026北京德尔康尼骨科医院招聘50人笔试备考题库及答案解析
- 2026年山东胜利职业学院单招综合素质考试题库附答案解析
- 不合格人员再培训制度
- 《世说新语》启发教学法示范教案
- 四川省2025年高职单招职业技能综合测试(中职类)计算机类试卷(含答案解析)
- 2025年采制样工岗位培训与考试题库采及答案
- 中国微生物肥项目创业投资方案
- 山东省潍坊市2025年中考数学真题附真题答案
- 137案例黑色三分钟生死一瞬间事故案例文字版
- 超声引导下外周静脉输液技术临床应用与进展
- 不全流产保守治疗共识
- 《骆驼祥子》知识点24章分章内容详述(按原著)
评论
0/150
提交评论