




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
期末复习(三)——平行四边形
知识点1平行四边形的性质和判定
1.平行四边形不一定具有的性质是()
A.对边平行B.邻边相等C.对角相等D.对角线互相平
2.如图1,在o/BCD中,DE平分/4DC,AD=8,BE=3,则CD=(
图1
A.4B.5C.6D.7
3.如图2,四边形N5CD的对角线NC,AD相交于点0,下列条件不能判定四边形/BCD
是平行四边形的是()
图2
A.OA^OC,OB=ODB.AB=CD,AD=BC
C.ZBAD=ZBCD,AB//CDD.AB^CD,40=C0
4.如图3,4D〃2C,/2〃CD,E是直线BC上一点,若的面积为6,则四边形4BCD
的面积为.
图3
5.如图4,在O4BCD中,AE,CF分别平分/24D和/BCD,交对角线AD于点E,
F.
(1)若/2CF=75。,求//2C的度数.
(2)连接CE,/F.求证:四边形NECF是平行四边形.
图4
知识点2矩形的性质和判定
6.如图5,要使O/8CD为矩形,可以添加的条件是()
A.AC±BDB.AC=BDC.ZAOB=6Q°D.AB=BC
7.如图6,将矩形/BCD沿对角线BD折叠,记点C的对应点为点C.若乙4〃(7=20。,
则NADC的度数为()
A.50°B.550C.60°D.650
8.如图7,在矩形/BCD中,对角线/C,50相交于点O,若。8=2,ZACB=3Q°,
则BC的长度为.
9.如图8,在矩形/BCD中,E,尸分别是CD的中点,连接DE,BF,分别取
DE,"的中点M,N,连接/M,CN,MN.若AB=2梃,BC=4,则图中阴影部分的面积
为.
图8
10.如图9,在△/BC中,/£是边8c上的高,过点/作且NO=£C,连接C
D.
(1)求证:四边形NECD是矩形;
(2)若NC平分/D/8,AB=5,EC=2,求CD的长.
AD
EC
□知识点3菱形的性质和判定
11.如图10,O/8CZ)的对角线4C,5。相交于点O,则添加下列条件后,能判定四边
形ABCD是菱形的是()
图10
A.AB=ACB.AC-LBDC.AB=CDD.AC=BD
12.如图11,在菱形45CZ)中,过点。作C£_L5C,交对角线5。于点E,若NBAD=
118°,则NC£5=()
C
图11
A.590D.720
13.如图12,在菱形45CQ中,对角线3。,ZC的长分别为6cm和8cm,则边上
的高。£的长为()
B
图12
A.2.4cmB.4.8cmC.5cmD.9.6cm
14.如图13,在平面直角坐标系中,菱形45CZ)的顶点Z在歹轴上,顶点3,。的
坐标分别为(一3,0),(2,0),则顶点。的坐标为()
A.(4,5)B.(5,4)C.(5,3)D.(4,3)
15.如图14,在oNBCD中,BE_LCD于点E,_L8C于点忆BE与。尸相交于点P,
且BE=DF.
(1)求证:四边形/BCD是菱形;
(2)若/4=45。,△8"的周长为4,则N8的长为.
知识点4正方形的性质和判定
16.下列性质中,正方形具有而矩形不具有的是()
A.相邻两内角互补B.两组对角分别相等
C.两条对角线互相垂直D.两组对边分别平行且相等
17.如图15,在正方形中,E是对角线NC上一点,^.AE=AB,则NE3C的度
数是()
A.2O0B.22.50C.3O0D.450
18.如图16,在菱形N8CD中,对角线NC,8。相交于点。,请添加一个条件:
—,使菱形/BCD是正方形.
图16
19.如图17,在正方形N8CD中,对角线/C,8。相交于点O,M是边/。上一点,连
接OM,过点0作ON1OM,交于点N.若四边形MQVD的面积是1,则的长为
AD
N
BC
图17
20.如图18,已知菱形/BCD,E,尸是对角线8。所在直线上的两点,连接NE,CE,
AF,CE已知8£=。尸,ZAED=45°.
(1)求证:四边形NEW是正方形;
(2)若8。=4,BE=3,求△8CE的周长.
图18
知识点5三角形中的重要线段
21.如图19,在△48C中,E,尸分别是边NC的中点.若△,£厂的周长为5,则△NBC
的周长为()
R
图19
A.8B.10C.12D.14
22.如图20,在中,CD是斜边N8上的中线,若//=26。,则的度数
为()
CA
图20
A.260B.480C.52°D,640
23.如图21,D,E,尸分别是A/BC各边的中点,下列说法正确的是()
图21
N.DE=DFB.EF=%BCS&ABD=S^ACDD.4D平分/R4c
24.如图22,线段DE与/尸分别是△48C的中位线与中线,连接。FEF.
(1)求证:四边形4DFE是平行四边形.
(2)当线段N尸与3C满足怎样的数量关系时,四边形NOEE是矩形?并说明理由.
图22
闻曾硼缀
基础题
1.在O/8CD中,Z^+ZC=200°,则N3的度数为()
A.13O0B.1OO0C.8O0D.7O0
2.下列条件中,不能判定一个四边形是平行四边形的是()
A.两组对角分别相等B.两组对边分别平行
C.两条对角线相等D.一组对边平行且相等
3.如图23,在菱形/BCD中,//3C=120。,对角线3。=4,则菱形/BCD的面积是()
图23
A.16B.8gC.8亚D.4g
4.在木艺活动课上,老师拿出了一块平行四边形木板,以下测量方案中,能确定这块木
板是矩形的是()
A.测量两组对边相等B.测量一组邻边相等
C.测量对角线相等D.测量对角线互相垂直
5.如图24,在周长为10cm的o/BCD中,AB<AD,AC,8。相交于点O,过点O作
OELBD交AD于点E,连接则△48E的周长为()
AED
图24
A.4cmB.5cmC.8cmD.10cm
6.有一架竖直靠在与地面垂直的墙上的梯子正在下滑,在墙角有一只猫紧紧盯住位于梯
子正中间的老鼠,等待与老鼠距离最小时扑捉.将梯子、猫和老鼠看作同一平面内的线或点,
其示意图如图25所示.已知N/O8=90。,点8分别在射线ON,OM1.,48的长度始终
保持不变,P为的中点,梯子N端沿墙向下滑行,同时,梯子8端沿地面向右滑行.在
此滑动过程中,猫与老鼠之间的距离。尸的变化情况是()
A不变B.变小D.无法判断
7.如图26,在平面直角坐标系中,四边形是正方形,点/的坐标为(1,0),点、B
的坐标为(一2,4),点。在第一象限,则点C的坐标为.
8.如图27,在o/BCD中,对角线NC,8。相交于点E,ZCBD=90°,BC=4,AC=
10,则o/BCD的面积为.
9.如图28,在矩形N3CD中,对角线NC,8。相交于点O,过点。作交
于点£,相交于点e已知/8=4,的面积为5,则的长为
AED
B/FC
图28
10.如图29,菱形/BCD的对角线/C和8。相交于点O,BE//AC,CE//BD.
(1)求证:四边形O8£C是矩形;
⑵连接若/N8C=120。,AD=2,求的长.
BE
图29
11.如图30,在矩形/BCD中,M,N分别是边NO,8c的中点,E,尸分别是线段
BM,CM的中点,连接NE,NF.
(1)求证:四边形AffiNF是菱形;
(2)当N8::2时,求证:四边形MENF是正方形.
图30
提升题
12.如图31,已知正方形/BCD的边长为4,P是对角线8。上一点,PE1.BC于点E,
PFLCD于点、F,连接NP,EE下列结论®PD=y[2DF,②四边形PECF的周长为8;③EF
的最小值为2;④/尸,£尸.其中正确结论的序号有()
图31
A.①②B.①②④C.②③④D.①②③
13.如图32,在矩形/BCD中,AB=3cm,8C=6cm.点尸从点。出发沿ZM向点/运
动,运动到点/停止;同时,点。从点8出发沿3C向点C运动,运动到点C停止,点尸,Q
的速度均是1cm/s.连接PQ,AQ,CP.设点尸,。运动的时间为ts.
(1)当/=时,四边形/8QP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)求(2)中菱形NQCP的周长.
BQfC
图32
14.如图33,G是正方形N8CD的对角线C4的延长线上的一点,以/G为边作正方形
AEFG,连接GD,£8与GZ)相交于点"
(1)求证:GD=EB;
(2)判断E8与GD的位置关系,并说明理由;
(3)若N8=2,AG=@求£8的长.
图33
期末复习(三)—平行四边形
1.B2.B3.D4.12
5.(1)解::CF平分/BCD,/BCF=75。,
:.ZBCD=2ZBCF=2X15o=l50°.
:四边形/BCD是平行四边形,CD
NABC=180°-ZBCD=180°-150°=30°.
(2)证明:二•四边形ABCD是平行四边形,
:.AB=CD,AB//CD,ZBAD=ZBCD.:.ZABE=ZCDF.
':AE,CF分别平分/胡。和/BCD,
11
/./BAE=-/BAD,ZDCF^-ZBCD.:.NB4E=ZDCF.
22
QBE=NCDF,
在AABE和△CDF中,“8=CD
I/BAE二NDCF,
:.△/3£gZ\CDF(ASA).;.ZAEB=ZCFD,AE=CF.
/.180°-ZAEB=180°—/CFD,即/AEF=ZCFE.
CE.•.四边形AECF是平行四边形.
6.B7.B8.2A/39.4也
10.⑴证明:':AD=EC,AD//BC,即/Z)〃£C,
.••四边形/ECO是平行四边形.
•是边3c上的高,AZAEC^90°.
.••四边形NEC。是矩形.
(2)解::/C平分:./BAC=NDAC.
'JAD//BC,:.ADAC=ZBCA.
:.NBCA=NBAC.;.CB=AB=5.
":EC=2,:,BE=CB~EC=5~2=3.
在RtZ\48E中,由勾股定理,WAE=^AB2_BE1^2_32=4.
•四边形/ECO是矩形,;.CD=/E=4.
11.B12.A13.B14.B
15.(1)证明:":BE±CD,DFLBC,:.NCEB=NCFD=9。。.
zZC=ZC
在△CFO和△CE3中,JZCFD=2CEB
、DF=BE,,
:.ACFDqACEB(AAS).:.CD=CB.
又四边形/BCD是平行四边形,.•.四边形/BCD是菱形.
(或:2E_LCD,DF±BC,
:.SnABCD=BE-CD=DFBC.
又BE=DF,:.CD=BC.:.口ABCD是菱形.)
⑵解:4.
16.C17.B18.48J_8c(答案不唯一)19.2
20.(1)证明:如答图1,连接NC交AD于点Q
答图1
:四边形48co是菱形,
:.AO=CO,BO=DO,ACLBD.
,:BE=DF,
:.BE+BO^DF+DO,即E0=F0.
下与NC互相垂直平分.
四边形NEC尸是菱形.
;.EF平分N4EC.
:.ZAEC=2AAED=2X45°=90°.
.••四边形/ECF是正方形.
(2)解::四边形/BCD是菱形,.•.5O=;8O=;X4=2.
:.EO=BO+BE=5.
.四边形是正方形,
:.ZCOE=90°,CO=EO=5.
:.CE=«EO2+。。2=袍2+52=5啦,
BC=ylBO2+(%>2=、22+52=回.
/kBCE1的周长为BC+CE+BE^yl29+5y[2+3.
21.B22.C23.C
24.(1)证明:由题意,得。是48的中点,£是/C的中点,厂是3C的中点,
:.AD=-AB,E尸是△48C的中位线.
2
1
:.EF//AB,EF=-AB.:.EF//AD,EF=AD.
2
.••四边形NDFE是平行四边形.
(2)解:当/尸=/c时,四边形40尸£是矩形.理由如下:
•.,线段DE是△/BC的中位线,
2
1
•;AF=-BC,;.AF=DE.
2
又四边形ADFE是平行四边形,
.••四边形/。底£是矩形.
常考训练l.C2.C3.B4.C5.B6.A7.(2,7)8.249.3
10.(1)证明:\'BE//AC,CE//BD,
:.四边形OBEC是平行四边形.
•四边形/BCD是菱形,;./C_L3D
ZBOC=90°.:.四边形OBEC是矩形.
(2)解::四边形48。是菱形,
11
:.BC=AD=2,NCBD=-NABC=-X120°=60°,OB=OD,4CLBD,即/5OC=90°.
22
NOCB=180°-NBOC—ZCBD=30°.
1
:.OB=OD=-BC=\.:.BD=2.
2
在RtZXBOC中,OC&BC12_。必=也2_
,四边形。AEC是矩形,,2E=0C=g,/DBE=90。.
2
在中,DE=^BD^+BE^=^+(V3)=^7.
11.证明:(1):N,E,尸分别是8C,BM,CM的中点,
11
:.NE〃MF,NF//EM,ME=-BM,MF=-CM.
22
四边形MENF是平行四边形.
:四边形/BCD是矩形,:.AB=DC,ZA=ZD=90°.
:M是/。的中点,;.AM=DM.
1AM=DM
在和中,IZA=ZD
(AB=DC'
AABM沿AZ)CM(SAS).;.BM=CM.
:.儿出=〃R;.四边形MENF是菱形.
(2):四边形/BCD是矩形,:.AB=DC,ZA=ZD=90°.
:M是的中点,;.AM=DM=-AD.
2
1
\"AB:^£>=1:2,:.AB=-AD.
2
;.4B=AM=DM=DC.
1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 支架护坡施工方案
- 地面网格施工方案
- 矿井围墙施工方案
- 工作绩效评估方法3篇
- 小学生制定方式使用协议书3篇
- 全新定制衣柜质保合同3篇
- 回款期对中小企业发展影响3篇
- 工程用块石采购合同2篇
- 德国委托书翻译认证参考3篇
- 季度销售工作总结(10篇)
- 医院培训课件:《产前准备-为顺产做准备》
- 《管理学原理》(课件)
- 长城汽车2025人才测评答案
- 幼儿园法制教育讲座
- 河道的管理和防护课件
- 绿化作业安全教育培训
- 《中华人民共和国产品质量法》知识培训
- 技能人才评价命题技术规程
- 中职不等式的试题及答案
- 深信服aES产品技术白皮书-V1.5
- 浙江省金华义乌市稠州中学2024-2025学年九年级下学期3月独立作业英语试卷(原卷版+解析版)
评论
0/150
提交评论