




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省汉中市部分学校2025届高三第二学期期末检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.2.设复数满足为虚数单位),则()A. B. C. D.3.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.4.函数的图象大致是()A. B.C. D.5.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得6.已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为()A. B. C. D.7.函数的大致图象是()A. B.C. D.8.已知满足,则()A. B. C. D.9.中,,为的中点,,,则()A. B. C. D.210.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.10011.若直线与曲线相切,则()A.3 B. C.2 D.12.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4 B.3 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在定义域R上的导函数为,若函数没有零点,且,当在上与在R上的单调性相同时,则实数k的取值范围是______.14.设,满足约束条件,若的最大值是10,则________.15.若,则的最小值是______.16.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.18.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.19.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求△MON的面积.20.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.21.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.22.(10分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”.(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流.(i)求这人中,男生、女生各有多少人?(ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望.参考公式:,其中.临界值表:0.100.050.0250.01002.7063.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.2、B【解析】
易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.3、D【解析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.4、C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.5、A【解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.6、C【解析】
将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐近线对称,则圆心在渐近线上,所以.所以.故选:C【点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质,还考查了运算求解的能力,属于中档题.7、A【解析】
用排除B,C;用排除;可得正确答案.【详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【点睛】本题考查了函数图象,属基础题.8、A【解析】
利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.9、D【解析】
在中,由正弦定理得;进而得,在中,由余弦定理可得.【详解】在中,由正弦定理得,得,又,所以为锐角,所以,,在中,由余弦定理可得,.故选:D【点睛】本题主要考查了正余弦定理的应用,考查了学生的运算求解能力.10、D【解析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.11、A【解析】
设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.12、C【解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【详解】①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点必满足线性回归方程;因此“满足线性回归方程”是“,”必要不充分条件.故④错误;
所以正确的命题有①③.
故选:C.【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可知:为上的单调函数,则为定值,由指数函数的性质可知为上的增函数,则在,单调递增,求导,则恒成立,则,根据函数的正弦函数的性质即可求得的取值范围.【详解】若方程无解,则或恒成立,所以为上的单调函数,都有,则为定值,设,则,易知为上的增函数,,,又与的单调性相同,在上单调递增,则当,,恒成立,当,时,,,,,,此时,故答案为:【点睛】本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.14、【解析】
画出不等式组表示的平面区域,数形结合即可容易求得结果.【详解】画出不等式组表示的平面区域如下所示:目标函数可转化为与直线平行,数形结合可知当且仅当目标函数过点,取得最大值,故可得,解得.故答案为:.【点睛】本题考查由目标函数的最值求参数值,属基础题.15、8【解析】
根据,利用基本不等式可求得函数最值.【详解】,,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【点睛】本题考查基本不等式,构造基本不等式的形式是解题关键.16、【解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【详解】解:由条件得到又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:.【点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2)由的几何意义得,.将代入抛物线C的方程,利用韦达定理,,即可求得结果.【详解】(1)因为,,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.19、(1)直线l的普通方程为x+y-4=0.曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)4【解析】
(1)将直线l参数方程中的消去,即可得直线l的普通方程,对曲线C的极坐标方程两边同时乘以,利用可得曲线C的直角坐标方程;(2)求出点到直线的距离,再求出的弦长,从而得出△MON的面积.【详解】解:(1)由题意有,得,x+y=4,直线l的普通方程为x+y-4=0.因为ρ=4sin所以ρ=2sinθ+2cosθ,两边同时乘以得,ρ2=2ρsinθ+2ρcosθ,因为,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)∵原点O到直线l的距离直线l过圆C的圆心(,1),∴|MN|=2r=4,所以△MON的面积S=|MN|×d=4.【点睛】本题考查了直线与圆的极坐标方程与普通方程、参数方程与普通方程的互化知识,解题的关键是正确使用这一转化公式,还考查了直线与圆的位置关系等知识.20、(1)证明见解析,是,,,,;(2)【解析】
(1)根据是球的直径,则,又平面,得到,再由线面垂直的判定定理得到平面,,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,,,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面,∴,.∴平面,∴,∴平面.根据证明可知,四面体是鳖臑.它的每个面的直角分别是,,,.(2)如图,以A为原点,,,所在直线为x,y,z轴建立直角坐标系,则,,,,.M为中点,从而.所以,设,则.由,得.由得,即.所以.设平面的一个法向量为.由.取,,,得到.记与平面所成角为θ,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.21、(1)(2)(3)直线平面,证明见解析【解析】
取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,求出平面的一个法向量.(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抗菌功能与螺旋结构表面接触面积的协同优化路径
- 成本倒逼机制下刀削面机模块化设计与快速迭代开发模式
- 循环经济视角下的鞋套回收产业链整合困境
- 异材质复合面料加工时剑杆机张力动态调控难题
- 《点阵中的规律》(教学设计)2024-2025学年五年级上册数学北师大版
- 美妆集合店2025年美妆行业市场趋势与品牌战略布局报告
- 2025年初三数学初考试卷及答案
- 中国邮政2025西双版纳傣族自治州秋招金融业务类岗位面试模拟题及答案
- 2025年四年级素质杯试卷及答案
- 揭阳市烟草公司2025秋招会计核算岗位高频笔试题库含答案
- DB11∕T 2178-2023 城市河道边坡水土保持技术规范
- 2024-2025学年小学信息技术(信息科技)六年级全一册义务教育版(2024)教学设计合集
- GB 7300.304-2024饲料添加剂第3部分:矿物元素及其络(螯)合物甘氨酸铁络合物
- 2025届高考语文一轮复习:文言文主观题答题策略+课件
- 报名学车合同(2篇)
- 新高考背景下2025届高三历史一轮复习策略讲座
- 养老机构员工宿舍管理制度
- 小型农田水利工程验收管理手册
- 语文园地一词句段运用 根据词语写画面-2024-2025学年语文四年级上册(统编版)
- 1.6《算盘》(同步练习)-2024-2025学年四年级上册数学人教版
- 《会计基本技能》教案设计
评论
0/150
提交评论