2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题_第1页
2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题_第2页
2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题_第3页
2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题_第4页
2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省第五届测评活动高三下5月第一次阶段达标检测试题数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.2.设复数满足,在复平面内对应的点为,则()A. B. C. D.3.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是()A. B. C. D.4.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.35.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.46.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,7.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.8.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有()A.8种 B.12种 C.16种 D.20种9.已知向量满足,且与的夹角为,则()A. B. C. D.10.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.11.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}12.若P是的充分不必要条件,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.给出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,结果为的式子的序号是_____.14.等腰直角三角形内有一点P,,,,,则面积为______.15.曲线在点处的切线方程是__________.16.在中,角的对边分别为,且.若为钝角,,则的面积为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在等腰梯形中,AD∥BC,,,,,分别为,,的中点,以为折痕将折起,使点到达点位置(平面).(1)若为直线上任意一点,证明:MH∥平面;(2)若直线与直线所成角为,求二面角的余弦值.18.(12分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.19.(12分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,,证明:.20.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点且,,,.求证:平面平面以;求二面角的大小.21.(12分)已知函数.(Ⅰ)当时,讨论函数的单调区间;(Ⅱ)若对任意的和恒成立,求实数的取值范围.22.(10分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|⋅|PB|的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.2.B【解析】

设,根据复数的几何意义得到、的关系式,即可得解;【详解】解:设∵,∴,解得.故选:B【点睛】本题考查复数的几何意义的应用,属于基础题.3.D【解析】

利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,,所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,所以在区间上的最大值为.要使在区间上任取三个实数,,均存在以,,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.4.B【解析】

根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.5.A【解析】

采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.6.D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.7.B【解析】

令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.8.C【解析】

分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.9.A【解析】

根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.10.B【解析】

由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,.故选:B.【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.11.C【解析】

先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.12.B【解析】

试题分析:通过逆否命题的同真同假,结合充要条件的判断方法判定即可.由p是的充分不必要条件知“若p则”为真,“若则p”为假,根据互为逆否命题的等价性知,“若q则”为真,“若则q”为假,故选B.考点:逻辑命题二、填空题:本题共4小题,每小题5分,共20分。13.①②③【解析】

由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案为:①②③【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.14.【解析】

利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.15.【解析】

利用导数的几何意义计算即可.【详解】由已知,,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.16.【解析】

转化为,利用二倍角公式可求解得,结合余弦定理可得b,再利用面积公式可得解.【详解】因为,所以.又因为,且为锐角,所以.由余弦定理得,即,解得,所以故答案为:【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)【解析】

(1)根据中位线证明平面平面,即可证明MH∥平面;(2)以,,为,,轴建立空间直角坐标系,找到点的坐标代入公式即可计算二面角的余弦值.【详解】(1)证明:连接,∵,,分别为,,的中点,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)连接,在和中,由余弦定理可得,,由与互补,,,可解得,于是,∴,,∵,直线与直线所成角为,∴,又,∴,即,∴平面,∴平面平面,∵为中点,,∴平面,如图所示,分别以,,为,,轴建立空间直角坐标系,则,,,,.设平面的法向量为,∴,即.令,则,,可得平面的一个法向量为.又平面的一个法向量为,∴,∴二面角的余弦值为.【点睛】此题考查线面平行,建系通过坐标求二面角等知识点,属于一般性题目.18.(1),;(2)【解析】

(1)先将直线l和圆C的参数方程化成普通方程,再分别求出极坐标方程;(2)写出点M和点N的极坐标,根据极径的定义分别表示出和,利用三角函数的性质求出的最大值.【详解】解:(1),,即极坐标方程为,,极坐标方程.(2)由题可知,,当时,.【点睛】本题考查了参数方程、普通方程和极坐标方程的互化问题,极径的定义,以及三角函数的恒等变换,属于中档题.19.(1);(2)见解析.【解析】

(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等式转化为,进一步转化为,然后再通过构造加以证明即可.【详解】(1),根据题意,在内存在单调减区间,则不等式在上有解,由得,设,则,当且仅当时,等号成立,所以当时,,所以存在,使得成立,所以的取值范围为。(2)当时,,则,从而所证不等式转化为,不妨设,则不等式转化为,即,即,令,则不等式转化为,因为,则,从而不等式化为,设,则,所以在上单调递增,所以即不等式成立,故原不等式成立.【点睛】本题考查了利用导数研究函数单调性、利用导数证明不等式,这里要强调一点,在证明不等式时,通常是构造函数,将问题转化为函数的极值或最值来处理,本题是一道有高度的压轴解答题.20.证明见解析;.【解析】

推导出,,从而平面,由此证明平面平面以;以为原点,建立空间直角坐标系,利用法向量求出二面角的大小.【详解】解:,,为的中点,四边形为平行四边形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,为的中点,.平面平面,且平面平面,平面.如图,以为原点建立空间直角坐标系,则平面的一个法向量为,,,,,设,则,,,,,在平面中,,,设平面的法向量为,则,即,平面的一个法向量为,,由图知二面角为锐角,所以所求二面角大小为.【点睛】本题考查面面垂直的证明,考查二面角的大小的求法,考查了空间向量的应用,属于中档题.21.(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)首先求得导函数,然后结合导函数的解析式分类讨论函数的单调性即可;(Ⅱ)将原问题进行等价转化为,,恒成立,然后构造新函数,结合函数的性质确定实数的取值范围即可.【详解】解:(Ⅰ)当时,,当时,在上恒成立,函数在上单调递减;当时,由得:;由得:.∴当时,函数的单调递减区间是,无单调递增区间:当时,函数的单调递减区间是,函数的单调递增区间是.(Ⅱ)对任意的和,恒成立等价于:,,恒成立.即,,恒成立.令:,,,则得,由此可得:在区间上单调递减,在区间上单调递增,∴当时,,即又∵,∴实数的取值范围是:.【点睛】本题主要考查导函数研究函数的单调性和恒成立问题,考查分类讨论的数学思想,等价转化的数学思想等知识,属于中等题.22.(1)直线的普通方程,圆的直角坐标方程:.(2)【解析】

(1)直接利用转换关系的应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论