广东省深圳市2024年中考数学专题专练圆的证明与计算专题_第1页
广东省深圳市2024年中考数学专题专练圆的证明与计算专题_第2页
广东省深圳市2024年中考数学专题专练圆的证明与计算专题_第3页
广东省深圳市2024年中考数学专题专练圆的证明与计算专题_第4页
广东省深圳市2024年中考数学专题专练圆的证明与计算专题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE6圆的证明与计算专题1.如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2eq\r(3),求PD的长.2.如图,OA,OD是⊙O半径,过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.(1)求证:直线CD是⊙O的切线;(2)假如D点是BC的中点,⊙O的半径为3cm,求eq\o(DE,\s\up8(︵))的长度.(结果保留π)3.如图,点D是等边三角形ABC的外接圆上一点,M是BD上一点,且满意DM=DC,点E是AC与BD的交点.(1)求证:CM∥AD;(2)假如AD=1,CM=2.求线段BD的长及△BCE的面积.4.如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG·BA=48,FG=eq\r(2),DF=2BF;求AH的值.5.如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满意PE2=PA·PC,连接CE,AE,OE,OE交CA于点D.(1)求证:△PAE∽△PEC;(2)求证:PE为⊙O的切线;(3)若∠B=30°,AP=eq\f(1,2)AC,求证:DO=DP.6.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD,AC分别交于点E,F,且∠ACB=∠DCE.(1)推断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=eq\f(\r(2),2),BC=2,求⊙O的半径.7.如图①,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.(1)试推断△ABC的形态,并说明理由;(2)如图②,若线段AB、DE的延长线交于点F,∠C=75°,CD=2-eq\r(3),求⊙O的半径和BF的长.8.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2eq\r(5)DE,求tan∠ABD的值.9.如图,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD;(2)已知点E在AB上,且BC2=AB·BE.(i)若tan∠ACD=eq\f(3,4),BC=10,求CE的长;(ii)试判定CD与以A为圆心,AE为半径的⊙A的位置关系,并说明理由.参考答案1.(1)证明:由题意可得:∠BPC=∠BAC,∠APC=∠ABC,∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC是等边三角形.(2)解:∵∠PAC=90°,∴PC是圆的直径,∴∠PBC=90°,∴∠PBD=90°,∵△ABC是等边三角形,∴AB=BC=2eq\r(3),∵∠CPB=60°,∴PB=eq\f(2\r(3),tan60°)=2,∵∠APC=60°,∴∠DPB=180°-60°-60°=60°,∴PD=2PB=4.2.(1)证明:∵CA切⊙O于点A,∴∠CAO=90°.∵OC平分∠AOD,∴∠AOC=∠DOC,在△AOC和△DOC中,,∴△AOC≌△DOC(SAS),∴∠CDO=∠CAO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线.(2)解:由(1)知:OD⊥BC,又∵D是BC的中点,∴OD是BC的垂直平分线,∴OC=OB,∴∠BOD=∠DOC=∠COA=eq\f(1,3)×180°=60°,∴∠DOE=60°,∴eq\o(DE,\s\up8(︵))的长度为eq\f(60,180)π×3=π.3.(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠BDC=∠BAC=60°,∠ADB=∠ACB=60°,∴∠ADC=120°,∵DM=DC,∴△DMC是等边三角形,∴∠MCD=60°,∴∠MCD+∠ADC=180°,∴CM∥AD.(2)解:∵BC=AC,∠ADC=∠BMC=120°,∠CBM=∠CAD,∴△ADC≌△BMC,∴AD=MB=1,∴BD=BM+MD=AD+CM=1+2=3,∵CM∥AD,∴∠CAD=∠ACM,∠ADE=∠EMC,∴△ADE∽△CME,∴eq\f(AD,CM)=eq\f(AE,EC)=eq\f(DE,EM)=eq\f(1,2),∴S△ADE=eq\f(1,4)S△EMC,∵S△CMD=eq\f(1,2)×eq\r(3)×2=eq\r(3),∴S△EMC=eq\f(2,3)S△CMD=eq\f(2,3)eq\r(3),S△EDC=eq\f(1,3)S△CDM=eq\f(\r(3),3),∴S△ADE=eq\f(1,4)S△EMC=eq\f(\r(3),6),∴S△ADC=S△ADE+S△DCE=eq\f(\r(3),6)+eq\f(\r(3),3)=eq\f(\r(3),2),∴S△BCE=S△BMC+S△MCE=S△ADC+S△CME=eq\f(\r(3),2)+eq\f(2,3)eq\r(3)=eq\f(7,6)eq\r(3).4.解:(1)连接DC,∵DB是⊙O的直径,∴∠DCB=90°,∴∠D+∠DBC=90°,∵∠D=∠A,∠EBC=∠A.∴∠D=∠EBC,∴∠EBC+∠DBC=90°,即∠DBE=90°,∴BE是⊙O的切线.(2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△CBG,∴eq\f(BC,BG)=eq\f(AB,BC),即BC2=BG·AB=48,∴BC=4eq\r(3),∵CG∥EB,∴CF⊥BD,∴∠CFB=∠DCB=90°,又∵∠CBF=∠DBC,∴Rt△BFC∽Rt△BCD,∴eq\f(BF,BC)=eq\f(BC,BD),∴BC2=BF·BD=48,又∵DF=2BF,BD=DF+BF=3BF,∴BF=4,在Rt△BCF中,CF=eq\r(BC2-BF2)=4eq\r(2),∴CG=CF+FG=5eq\r(2),在Rt△BFG中,BG=eq\r(BF2+FG2)=3eq\r(2),∵BA=eq\f(48,BG)=8eq\r(2),∴AG=5eq\r(2),∴CG=AG,∴∠A=∠ACG=∠BCG,∠CFH=∠CFB=90°,∴∠CHF=∠CBF,∴CH=CB=4eq\r(3),∵∠ABC=∠CBG,∠BCG=∠A,∴△ABC∽△CBG,∴eq\f(AC,CG)=eq\f(BC,BG),∴AC=eq\f(BC·CG,BG)=4eq\r(3)×eq\f(5\r(2),3\r(2))=eq\f(20\r(3),3),∴AH=AC-CH=eq\f(20\r(3),3)-4eq\r(3)=eq\f(8\r(3),3).5.(1)解:∵PE2=PA·PC,∴eq\f(PA,PE)=eq\f(PE,PC),∵∠P=∠P,∴△PAE∽△PEC.(2)证明:∵△PAE∽△PEC,∴∠PEA=∠PCE,∵OA=OE,∴∠OEA=∠OAE,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OAE+∠ECA=90°,∴∠PEO=∠PEA+∠OEA=∠PCE+∠OAE=90°,∵OE为⊙O半径,∴PE是⊙O的切线.(3)证明:过点O作OH⊥CP于点H,∵AB是⊙O的直径,∠B=30°,∴BC=eq\f(AC,tan30°)=eq\f(AC,\f(\r(3),3))=eq\r(3)AC,∵O是AB的中点,∴OH=eq\f(1,2)BC=eq\f(\r(3),2)AC,∵PE2=PA·PC,AP=eq\f(1,2)AC,∴PE2=eq\f(1,2)AC·(eq\f(1,2)AC+AC)=eq\f(1,2)AC·eq\f(3,2)AC=eq\f(3,4)AC2,∴PE=eq\f(\r(3),2)AC,∴OH=PE,∵∠OHA=∠PED=90°,∠HDO=∠EDP,∴△HDO≌△EDP,∴DO=DP.6.解:(1)直线CE与⊙O相切.证明如下:连接OE,∴∠OAE=∠AEO,∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC,又∵∠ACB=∠DCE,∴∠DAC=∠AEO=∠DCE,∵∠DCE+∠DEC=90°,∴∠AEO+∠DEC=90°,∴∠OEC=90°,∵OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=eq\f(AB,BC)=eq\f(\r(2),2),BC=2,∴AB=BC·tan∠ACB=eq\r(2),∴AC=eq\r(AB2+BC2)=eq\r(6),又∵∠ACB=∠DCE,∴tan∠DCE=eq\f(\r(2),2),∴DE=DC·tan∠DCE=AB·tan∠DCE=eq\r(2)×eq\f(\r(2),2)=1,在Rt△CDE中,CE=eq\r(CD2+DE2)=eq\r(3),设⊙O的半径为r,在Rt△COE中,CO2=OE2+CE2,即(eq\r(6)-r)2=r2+3,解得r=eq\f(\r(6),4).∴⊙O的半径为eq\f(\r(6),4).7.解:(1)△ABC为等腰三角形,理由如下:如解图①,连接OE,在⊙O中,∵OE=OB,∴∠OEB=∠B,图①∵DE是⊙O的切线,∴∠OED=90°,∵ED⊥AC,∴∠ADE=90°=∠OED,∴OE∥AC且BE=CE=eq\f(1,2)BC,∴∠OEB=∠C,∴∠B=∠C,∴AC=AB,∴△ABC为等腰三角形.(2)如图②,过点B作BH⊥DF,∵AC⊥DF,∴BH∥AC,∠EBH=∠C,由(1)知∠CDE=∠BHE=90°,BE=CE,∴△CDE≌△BHE(AAS),∴CD=BH=2-eq\r(3),∵∠HBF=180°-∠OBE-∠EBH=180°-75°-75°=30°,图②∴∠F=90°-30°=60°,在Rt△BFH中,∴BF=eq\f(BH,sin60°)=eq\f(4\r(3)-6,3),设OE=x,在Rt△OEF中,sin60°=eq\f(OE,OF)=eq\f(x,x+BF),解得x=2,故⊙O的半径为2,BF的长为eq\f(4\r(3)-6,3).8.(1)解:∵对角线AC为⊙O直径,∴∠ADC=90°,∴∠CDE=90°.(2)证明:连接OD,∵AC为⊙O的直径,CE⊥AC,∴∠ADC=∠CDE=90°,∠ACF=90°,又∵在Rt△CDE中,点F为斜边CE的中点,∴DF=FC,∠CDF=∠DCF,又∵OD=OC,∴∠ODC=∠OCD,∴∠ODF=∠ODC+∠CDF=∠OCD+∠DCF=∠ACE=90°,∵OD为⊙O半径,∴DF是⊙O的切线.(3)解:由圆周角定理可得,∠ABD=∠ACD,由题意知,∠ADC=∠CDE=90°,∠CAD=∠ECD,∴△ADC∽△CDE,∴eq\f(AD,CD)=eq\f(CD,DE),∴CD2=AD·DE,∵AC=2eq\r(5)DE,设DE=a,AD=b,∴AC=2eq\r(5)a,CD=eq\r(ab),在Rt△ACD中,由勾股定理可得:AD2+CD2=AC2,即b2+(eq\r(ab))2=(2eq\r(5)a)2,上式两边同时除以a2,整理后得到:(eq\f(b,a))2+eq\f(b,a)-20=0,解得eq\f(b,a)=4或eq\f(b,a)=-5(舍去).∴tan∠ABD=tan∠ACD=eq\f(AD,CD)=eq\f(b,\r(ab))=eq\r(\f(b,a))=2.9.(1)证明:∵点O为直角三角形斜边AB上的中点,∴OC=OB,∴∠B=∠BCO,∵∠ACB=∠DCO=90°,即∠ACO+∠BCO=∠ACO+∠ACD=90°,∴∠BCO=∠ACD∴∠B=∠ACD.(2)解:(i)∵BC2=AB·BE,即eq\f(BC,BA)=eq\f(BE,BC),又∵∠B=∠B,∴△BCA∽△BEC,∴∠BEC=∠BCA=90°,∵tan∠ACD=eq\f(3,4),又由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论