上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷含解析_第1页
上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷含解析_第2页
上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷含解析_第3页
上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷含解析_第4页
上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市闵行区信宏中学2025届中考第一次模拟测试数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命2.如图,是的外接圆,已知,则的大小为A. B. C. D.3.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是()A.∠BCB′=∠ACA′ B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′4.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.5.某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是()A. B.C. D.6.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a2•a4=a67.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1058.如果向北走6km记作+6km,那么向南走8km记作()A.+8kmB.﹣8kmC.+14kmD.﹣2km9.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.010.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.12.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m__________n.(填“>”,“=”或“<”)13.计算:a3÷(﹣a)2=_____.14.若m+=3,则m2+=_____.15.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.16.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为_____.17.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.三、解答题(共7小题,满分69分)18.(10分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.19.(5分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?20.(8分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4000立方米所需时间与原来清雪3000立方米所需时间相同,求现在平均每天清雪量.21.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.22.(10分)某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?23.(12分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.24.(14分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.2、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故选A.3、C【解析】

根据旋转的性质求解即可.【详解】解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;B:,,又,,故B正确;D:,B′C平分∠BB′A′,故D正确.无法得出C中结论,故答案:C.本题主要考查三角形旋转后具有的性质,注意灵活运用各条件4、D【解析】

过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.5、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.6、D【解析】

根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【详解】A、(a2)5=a10,故原题计算错误;B、(x﹣1)2=x2﹣2x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2•a4=a6,故原题计算正确;故选:D.此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.7、B【解析】

科学计数法是a×,且,n为原数的整数位数减一.【详解】解:35578=3.5578×,故选B.本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键.8、B【解析】

正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.9、B【解析】

根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.10、C【解析】

根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.【详解】解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴则点A不经过点P故选C.此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质12、>【解析】

由图像可知在射线OP上有一个特殊点Q,点Q到射线OA的距离QD=2,点Q到射线OB的距离QC=1,于是可知∠AOP>∠BOP,利用锐角三角函数sin∠AOP>【详解】由题意可知:找到特殊点Q,如图所示:设点Q到射线OA的距离QD,点Q到射线OB的距离QC由图可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.13、a【解析】

利用整式的除法运算即可得出答案.【详解】原式=a=a.本题考查的知识点是整式的除法,解题关键是先将-a2变成a14、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+=3两边平方得:(m+)2=m2++2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.15、【解析】

先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=;故答案为:.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,则BG=AB−AG=6−4=2.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.故答案是:1.17、【解析】

由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案为.此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.三、解答题(共7小题,满分69分)18、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】

(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;

(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,

则四边形AECD是矩形,

∴CE=AD=1,AE=CD=3,

∵AB=BC,

∴BE=AB-1,

在Rt△ABE中,∵AB2=AE2+BE2,

∴AB2=32+(AB-1)2,

解得:AB=5;

(2)过P作PF⊥BQ于F,

∴BF=BQ=,

∴△PBF∽△ABE,

∴,

∴,

∴PB=,

∴PA=AB-PB=,

过P作PG⊥CD于G交AE于M,

∴GM=AD=1,∵DC⊥BC∴PG∥BC

∴△APM∽△ABE,

∴,

∴,

∴PM=,

∴PG=PM+MG==PB,

∴圆P与直线DC相切.本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.19、(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;

(2)设最多将台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x元,依题意,得解得经检验,是原方程的解.答:第一次购入的空调每台进价是2400元.(2)由(1)知第一次购入空调的台数为24000÷2400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y台空调打折出售,由题意,得解得答:最多可将8台空调打折出售.20、现在平均每天清雪量为1立方米.【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4000立方米所需时间与原来清雪3000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得解得x=1.经检验x=1是原方程的解,并符合题意.答:现在平均每天清雪量为1立方米.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.21、(1)12;(2)1【解析】

(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为24=1故答案为:12(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为412=1本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)一个足球需要50元,一个篮球需要80元;(2)1个.【解析】

(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,根据购买2个足球和3个篮球共需340元,4个排球和5个篮球共需600元,可得出方程组,解出即可;【详解】(1)设购买一个足球需要x元,则购买一个排球也需要x元,购买一个篮球y元,由题意得:2x+3y=解得:x=50y=80答:购买一个足球需要50元,购买一个篮球需要80元;(2)设该中学购买篮球m个,由题意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整数,∴m最大可取1.答:这所中学最多可以购买篮球1个.本题考查了一元一次不等式及二元一次方程组的知识,解答本题的关键是仔细审题,得到等量关系及不等关系,难度一般.23、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】

(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1﹣x)2=6075,解得:x1=0.1=10%,x2=1.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98=595350

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论