黔南民族职业技术学院《统计机器学习》2023-2024学年第二学期期末试卷_第1页
黔南民族职业技术学院《统计机器学习》2023-2024学年第二学期期末试卷_第2页
黔南民族职业技术学院《统计机器学习》2023-2024学年第二学期期末试卷_第3页
黔南民族职业技术学院《统计机器学习》2023-2024学年第二学期期末试卷_第4页
黔南民族职业技术学院《统计机器学习》2023-2024学年第二学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页黔南民族职业技术学院《统计机器学习》

2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、假设要为一个智能推荐系统选择算法,根据用户的历史行为、兴趣偏好和社交关系为其推荐相关的产品或内容。以下哪种算法或技术可能是最适合的?()A.基于协同过滤的推荐算法,利用用户之间的相似性或物品之间的相关性进行推荐,但存在冷启动和数据稀疏问题B.基于内容的推荐算法,根据物品的特征和用户的偏好匹配推荐,但对新物品的推荐能力有限C.混合推荐算法,结合协同过滤和内容推荐的优点,并通过特征工程和模型融合提高推荐效果,但实现复杂D.基于强化学习的推荐算法,通过与用户的交互不断优化推荐策略,但训练难度大且收敛慢2、在构建一个用于图像识别的卷积神经网络(CNN)时,需要考虑许多因素。假设我们正在设计一个用于识别手写数字的CNN模型。以下关于CNN设计的描述,哪一项是不正确的?()A.增加卷积层的数量可以提取更复杂的图像特征,提高识别准确率B.较大的卷积核尺寸能够捕捉更广泛的图像信息,有助于模型性能提升C.在卷积层后添加池化层可以减少特征数量,降低计算复杂度,同时保持主要特征D.使用合适的激活函数如ReLU可以引入非线性,增强模型的表达能力3、在进行特征工程时,需要对连续型特征进行离散化处理。以下哪种离散化方法在某些情况下可以保留更多的信息,同时减少数据的复杂性?()A.等宽离散化B.等频离散化C.基于聚类的离散化D.基于决策树的离散化4、在构建机器学习模型时,选择合适的正则化方法可以防止过拟合。假设我们正在训练一个逻辑回归模型。以下关于正则化的描述,哪一项是错误的?()A.L1正则化会使部分模型参数变为0,从而实现特征选择B.L2正则化通过对模型参数的平方和进行惩罚,使参数值变小C.正则化参数越大,对模型的约束越强,可能导致模型欠拟合D.同时使用L1和L2正则化(ElasticNet)总是比单独使用L1或L2正则化效果好5、在一个分类问题中,如果数据分布不均衡,以下哪种方法可以用于处理这种情况?()A.过采样B.欠采样C.生成对抗网络(GAN)生成新样本D.以上方法都可以6、在进行机器学习模型评估时,除了准确性等常见指标外,还可以使用混淆矩阵来更详细地分析模型的性能。对于一个二分类问题,混淆矩阵包含了真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)等信息。以下哪个指标可以通过混淆矩阵计算得到,并且对于不平衡数据集的评估较为有效?()A.准确率(Accuracy)B.召回率(Recall)C.F1值D.均方误差(MSE)7、某机器学习项目需要对文本进行情感分类,同时考虑文本的上下文信息和语义关系。以下哪种模型可以更好地处理这种情况?()A.循环神经网络(RNN)与注意力机制的结合B.卷积神经网络(CNN)与长短时记忆网络(LSTM)的融合C.预训练语言模型(如BERT)微调D.以上模型都有可能8、在处理文本分类任务时,除了传统的机器学习算法,深度学习模型也表现出色。假设我们要对新闻文章进行分类。以下关于文本分类模型的描述,哪一项是不正确的?()A.循环神经网络(RNN)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU)能够处理文本的序列信息B.卷积神经网络(CNN)也可以应用于文本分类,通过卷积操作提取文本的局部特征C.Transformer架构在处理长文本时性能优于RNN和CNN,但其计算复杂度较高D.深度学习模型在文本分类任务中总是比传统机器学习算法(如朴素贝叶斯、支持向量机)效果好9、在机器学习中,数据预处理是非常重要的环节。以下关于数据预处理的说法中,错误的是:数据预处理包括数据清洗、数据归一化、数据标准化等步骤。目的是提高数据的质量和可用性。那么,下列关于数据预处理的说法错误的是()A.数据清洗可以去除数据中的噪声和异常值B.数据归一化将数据映射到[0,1]区间,便于不同特征之间的比较C.数据标准化将数据的均值和标准差调整为特定的值D.数据预处理对模型的性能影响不大,可以忽略10、在进行图像识别任务时,需要对大量的图像数据进行特征提取。假设我们有一组包含各种动物的图像,要区分猫和狗。如果采用传统的手工设计特征方法,可能会面临诸多挑战,例如特征的选择和设计需要丰富的专业知识和经验。而使用深度学习中的卷积神经网络(CNN),能够自动从数据中学习特征。那么,以下关于CNN在图像特征提取方面的描述,哪一项是正确的?()A.CNN只能提取图像的低级特征,如边缘和颜色B.CNN能够同时提取图像的低级和高级语义特征,具有强大的表达能力C.CNN提取的特征与图像的内容无关,主要取决于网络结构D.CNN提取的特征是固定的,无法根据不同的图像数据集进行调整11、在强化学习中,智能体通过与环境交互来学习最优策略。如果智能体在某个状态下采取的行动总是导致低奖励,它应该()A.继续采取相同的行动,希望情况会改善B.随机选择其他行动C.根据策略网络的输出选择行动D.调整策略以避免采取该行动12、当使用支持向量机(SVM)进行分类任务时,如果数据不是线性可分的,通常会采用以下哪种方法()A.增加样本数量B.降低维度C.使用核函数将数据映射到高维空间D.更换分类算法13、在使用支持向量机(SVM)进行分类时,核函数的选择对模型性能有重要影响。假设我们要对非线性可分的数据进行分类。以下关于核函数的描述,哪一项是不准确的?()A.线性核函数适用于数据本身接近线性可分的情况B.多项式核函数可以拟合复杂的非线性关系,但计算复杂度较高C.高斯核函数(RBF核)对数据的分布不敏感,适用于大多数情况D.选择核函数时,只需要考虑模型的复杂度,不需要考虑数据的特点14、在使用随机森林算法进行分类任务时,以下关于随机森林特点的描述,哪一项是不准确的?()A.随机森林是由多个决策树组成的集成模型,通过投票来决定最终的分类结果B.随机森林在训练过程中对特征进行随机抽样,增加了模型的随机性和多样性C.随机森林对于处理高维度数据和缺失值具有较好的鲁棒性D.随机森林的训练速度比单个决策树慢,因为需要构建多个决策树15、想象一个文本分类的任务,需要对大量的新闻文章进行分类,如政治、经济、体育等。考虑到词汇的多样性和语义的复杂性。以下哪种词向量表示方法可能是最适合的?()A.One-Hot编码,简单直观,但向量维度高且稀疏B.词袋模型(BagofWords),忽略词序但计算简单C.分布式词向量,如Word2Vec或GloVe,能够捕捉词与词之间的语义关系,但对多义词处理有限D.基于Transformer的预训练语言模型生成的词向量,具有强大的语言理解能力,但计算成本高二、简答题(本大题共4个小题,共20分)1、(本题5分)解释交叉验证在模型选择和评估中的用途。2、(本题5分)谈谈在高维数据中,如何进行特征工程。3、(本题5分)简述机器学习在医疗器械研发中的作用。4、(本题5分)什么是量子机器学习?它的潜在应用有哪些?三、论述题(本大题共5个小题,共25分)1、(本题5分)论述在机器学习中,如何进行特征的缩放和标准化。分析不同缩放方法对模型训练和性能的影响。2、(本题5分)分析机器学习中的K-Means聚类算法的参数选择问题。讨论其在不同数据分布和规模下的适用性。3、(本题5分)分析长短时记忆网络(LSTM)和门控循环单元(GRU)的改进之处及在序列数据处理中的优势。4、(本题5分)机器学习中的模型可解释性对于实际应用有何重要意义?结合具体案例,分析如何提高模型的透明度和可理解性。5、(本题5分)阐述机器学习中的贝叶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论