来宾市重点中学2025届数学八下期末调研试题含解析_第1页
来宾市重点中学2025届数学八下期末调研试题含解析_第2页
来宾市重点中学2025届数学八下期末调研试题含解析_第3页
来宾市重点中学2025届数学八下期末调研试题含解析_第4页
来宾市重点中学2025届数学八下期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

来宾市重点中学2025届数学八下期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.用配方法解一元二次方程时,可配方得()A. B.C. D.2.若,则()A.7 B.-7 C.5 D.-53.在矩形中,,,点是上一点,翻折,得,点落在上,则的值是()A.1 B.C. D.4.“的3倍与3的差不大于8”,列出不等式是()A. B.C. D.5.下列说法中,错误的是()A.对角线互相垂直的四边形是菱形B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.平行四边形的对角线互相平分6.如图,BE、CD相交于点A,连接BC,DE,下列条件中不能判断△ABC∽ADE的是()A.∠B=∠D B.∠C=∠E C. D.7.已知实数a、b,若a>b,则下列结论正确的是()A.a+3<b+3 B.a-4<b-4 C.2a>2b D.8.对于反比例函数y=-的图象,下列说法不正确的是()A.经过点(1,-4) B.在第二、四象限 C.y随x的增大而增大 D.成中心对称9.如图,点P是边长为2的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.1 B.2 C.22 D.10.下列二次根式是最简二次根式的是()A. B. C. D.11.已知四边形,对角线与交于点,从下列条件中:①;②;③;④.任取其中两个,以下组合能够判定四边形是平行四边形的是()A.①② B.②③ C.②④ D.①④12.定义:如果一个关于的分式方程的解等于,我们就说这个方程叫差解方程.比如:就是个差解方程.如果关于的分式方程是一个差解方程,那么的值是()A. B. C. D.二、填空题(每题4分,共24分)13.对于一次函数y=(a+2)x+1,若y随x的增大而增大,则a的取值范围________14.若直线与直线平行,且与两坐标轴围成的面积为1,则这条直线的解析式是________________.15.正方形的一边和一条对角线所成的角是________度.16.计算:=__.17.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.18.若,则的取值范围是_________.三、解答题(共78分)19.(8分)在▱ABCD中,的平分线与BA的延长线交于点E,CE交AD于F求证:;若于点H,,求的度数.20.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D,点E,F分别是AB,AC的中点.求证:四边形AEDF是菱形.21.(8分)求不等式组的正整数解.22.(10分)如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB.(1)求直线OB与AB的解析式;(2)求△AOB的面积.(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.①在y轴上是否存在一点P,使△PAB周长最小.若存在,请直接写出点P坐标;若不存在,请说明理由.②在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形.若存在,请直接写出点C坐标;若不存在,请说明理由.23.(10分)某校招聘一名数学老师,对应聘者分别进行了教学能力、科研能力和组织能力三项测试,其中甲、乙两名应聘者的成绩如右表:(单位:分)教学能力科研能力组织能力甲818586乙928074(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)根据实际需要,学校将教学、科研和组织能力三项测试得分按5:3:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?24.(10分)如图,,,垂足为E,,求的度数.25.(12分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.26.下面是小东设计的“作矩形”的尺规作图过程,已知:求作:矩形作法:如图,①作线段的垂直平分线角交于点;②连接并延长,在延长线上截取③连接所以四边形即为所求作的矩形根据小东设计的尺规作图过程(1)使用直尺和圆规,补全图形:(保留作图痕迹)(2)完成下边的证明:证明:,,四边形是平行四边形()(填推理的依据)四边形是矩形()(填推理的依据)

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【详解】移项,得x1-4x=-1在等号两边加上4,得x1-4x+4=-1+4∴(x-1)1=1.故C答案正确.故选C.【点睛】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.2、D【解析】

根据多项式乘多项式的运算法则进行计算,确定出p、q的值即可求出答案.【详解】因为,所以,所以故答案选D.【点睛】本题考查的是多项式乘多项式的运算,能够准确计算解题的关键.3、D【解析】

设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BC`=BC=5,EC`=CE=x,DE=CD-CE=3-x.在Rt△ABC`中利用勾股定理求出AC`的长度,进而求出DC`的长度;然后在Rt△DEC`中根据勾股定理列出关于x的方程,即可解决问题.【详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点C`处,∴BC`=BC=5,EC`=CE=x,DE=CD−CE=3−x.在Rt△ABC`中,由勾股定理得:AC`=5−3=16,∴AC`=4,DC`=5−4=1.在Rt△DEC`中,由勾股定理得:EC`=DE+DC`,即x=(3−x)+1,解得:x=.故选D【点睛】此题考查翻折变换(折叠问题),解题关键在于利用勾股定理进行计算4、A【解析】

直接利用已知得出3x-3小于等于1即可.【详解】根据题意可得:3x-3≤1.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.5、A【解析】

根据平行四边形、菱形的判定和性质一一判断即可【详解】解:A、对角线互相垂直的四边形不一定是菱形,本选项符合题意;B、对角线互相平分的四边形是平行四边形,正确,本选项不符合题意;C、菱形的对角线互相垂直,正确,本选项不符合题意;D、平行四边形的对角线互相平分,正确,本选项不符合题意;故选:A.【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、C【解析】

根据两个三角形相似的判定定理来判断:两边对应成比例且夹角相等,两个三角形相似.;三边对应成比例,两个三角形相似;两角对应相等,两个三角形相似。即可分析得出答案。【详解】解:∵∠BAC=∠DAE,∴当∠B=∠D或∠C=∠E时,可利用两角对应相等的两个三角形相似证得△ABC∽ADE,故A、B选项可判断两三角形相似;当时,可得,结合∠BAC=∠DAE,则可证得△ABC∽△AED,而不能得出△ABC∽△ADE,故C不能判断△ABC∽ADE;当时,结合∠BAC=∠DAE,可证得△ABC∽△ADE,故D能判断△ABC∽△ADE;故本题答案为:C【点睛】两个三角形相似的判定定理是本题的考点,熟练掌握其判定定理是解决此题的关键。7、C【解析】

根据不等式的性质逐个判断即可.(1不等式两边同时加或减去同一个整式,不等号方向不变;2不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;3不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.)【详解】根据a>b可得A错误,a+3>b+3B错误,a-4>b-4C正确.D错误,故选C.【点睛】本题主要考查不等式的性质,属于基本知识,应当熟练掌握.8、C【解析】

根据反比例函数的性质用排除法解答.【详解】A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;C、在同一象限内,y随x的增大而增大,故C选项不正确;D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.故选:C.【点睛】本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.9、B【解析】

先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.

∵菱形ABCD关于AC对称,M是AB边上的中点,

∴M′是AD的中点,

又∵N是BC边上的中点,

∴AM′∥BN,AM′=BN,

∴四边形ABNM′是平行四边形,

∴M′N=AB=1,

∴MP+NP=M′N=1,即MP+NP的最小值为1,

故选:B.【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.10、B【解析】

根据最简二次根式的概念即可求出答案.【详解】(A)原式=2,故A不是最简二次根式;(C)原式=2,故B不是最简二次根式;(D)原式=,故D不是最简二次根式;故选:B.【点睛】此题考查最简二次根式,解题关键在于掌握运算法则11、D【解析】

以①④作为条件能够判定四边形ABCD是平行四边形,根据平行得出全等三角形,即可求出OB=OD,根据平行四边形的判定推出即可;【详解】以①④作为条件,能够判定四边形ABCD是平行四边形.理由:∵AB//CD,∴∠OAB=∠OCD,在△AOB和△COD中,∴△AOB≌△COD(ASA),∴OB=OD,∴四边形ABCD是平行四边形.故选:D.【点睛】本题考查平行四边形的全等条件,熟练掌握平行四边形的性质的解题关键12、D【解析】

求出方程的解,根据差解方程的定义写出方程的解,列出关于的方程,进行求解即可.【详解】解方程可得:方程是差解方程,则则:解得:经检验,符合题意.故选:D.【点睛】考查分式方程的解法,读懂题目中差解方程的定义是解题的关键.二、填空题(每题4分,共24分)13、a>-1【解析】

一次函数y=kx+b,当k>0时,y随x的增大而增大.据此列式解答即可.【详解】解:根据一次函数的性质,对于y=(a+1)x+1,

当a+1>0时,即a>-1时,y随x的增大而增大.

故答案是a>-1.【点睛】本题考查了一次函数的性质.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.14、y=1x±1.【解析】

根据平行直线的解析式的k值相等可得k=1,然后求出直线与坐标轴的交点,再利用三角形的面积公式列式计算即可求得直线解析式.【详解】解:∵直线y=kx+b与直线y=1x-3平行,

∴k=1,即y=1x+b

分别令x=0和y=0,得与y,x轴交点分别为(0,b)和(-,0)

∴S=×|b|×|-|=1,∴b=±1

∴y=1x±1.

故答案为:y=1x±1.【点睛】本题考查两直线相交或平行问题,以及三角形面积问题,熟记平行直线的解析式的k值相等是解题的关键.15、45【解析】

正方形的对角线和其中的两边长构成等腰直角三角形,故正方形的一条对角线和一边所成的角为45度.【详解】解:∵正方形的对角线和正方形的其中两条边构成等腰直角三角形

∴正方形的一条对角线和一边所成的角是45°.故答案为:45°.【点睛】本题主要考查正方形对角线相等平分垂直的性质.16、2【解析】解:.故答案为.17、1.【解析】

设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.18、a≤3【解析】

根据算术平方根的非负性,可以得到3-a≥0,即可求得a得取值范围.【详解】解:由表示算术平方根具有非负性,则3-a≥0,即a≤3.【点睛】本题考查算平方根的性质,正确、灵活运用算术平方根的非负性是解答本题的关键.三、解答题(共78分)19、证明见解析25°【解析】

欲证明,只要证明即可;想办法求出即可解决问题;【详解】解:四边形ABCD是平行四边形,,,,,,,.,,,,平分,,,∴【点睛】本题考查了平行四边形的性质、角平分线的定义以及等腰三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、证明见解析.【解析】

先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形.【详解】解:∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形.【点睛】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形.21、正整数解是1,2,3,1.【解析】

先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.【详解】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,1.【点睛】本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.22、(1)直线OB的解析式为,直线AB的解析式为y=-x+1(2)1;(3)①存在,(0,);②存在,(2,-2)或(4,6)或(-2,2)【解析】

(1)根据题意分别设出两直线的解析式,代入直线上两点坐标即可求出直线OB与AB的解析式;(2)延长线段AB交x轴于点D,求出D的坐标,分别求出、由即可求得;(3)①根据两点之间线段最短,A、B在y轴同侧,作出点A关于y的对称点,连接B与y轴的交点即为所求点P;②使以A,O,C,B为顶点的四边形是平行四边形,则分三种情况分析,分别以OA、AB、OB为对角线作出平行四边形,利用中点坐标公式代入求解即可.【详解】解:(1)设直线OB的解析式为y=mx,∵点B(3,2),∴,∴直线OB的解析式为,设直线AB的解析式为y=kx+b,根据题意可得:解之得∴直线AB的解析式为y=-x+1.故答案为:直线OB的解析式为,直线AB的解析式为y=-x+1;(2)如图,延长线段AB交x轴于点D,当y=0时,-x+1=0,x=1,∴点D横坐标为1,OD=1,∴,∴,故答案为:1.(3)①存在,(0,);过点A作y轴的对称点,连接B,交y轴与点P,则点P即为使△PAB周长最小的点,由作图可知,点坐标为,又点B(3,2)则直线B的解析式为:,∴点P坐标为,故答案为:;②存在.或或.有三种情况,如图所示:设点C坐标为,当平行四边形以AO为对角线时,由中点坐标公式可知,AO的中点坐标和BC中点坐标相同,∴解得∴点坐标为,当平行四边形以AB为对角线时,AB的中点坐标和OC的中点坐标相同,则∴点的坐标为,当平行四边形以BO为对角线时,BO的中点坐标和AC的中点坐标相同,则解得∴点坐标为,故答案为:存在,或或.【点睛】本题考查了直线解析式的求法,列二元一次方程组求解问题,割补法求三角形的面积,两点之间线段最短,“将军饮马”模型的应用,添加点构造平行四边形,利用中点坐标公式求点坐标题型.23、(1)甲被录用;(2)乙被录用.【解析】分析:(1)根据平均数的计算公式分别进行计算,平均数大的将被录用;(2)根据加权平均数的计算公式分别进行解答,加权平均数大的将被录用;详解:(1)甲的平均成绩为=84(分);乙的平均成绩为=82(分),因为甲的平均成绩高于乙的平均成绩,所以甲被录用;(2)根据题意,甲的平均成绩为=83.2(分),乙的平均成绩为=84.8(分),因为甲的平均成绩低于乙的平均成绩,所以乙被录用.点睛:本题重点考查了算术平均数和加权平均数的计算公式,希望同学们要牢记这些公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn),加权平均数:(其中w1、w2、……wn为权数).算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.24、【解析】

直接利用平行线的性质得出∠A+∠C=180°,进而得出∠C的度数,再利用垂直的定义得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论