河南省临颍县联考2025届八下数学期末学业质量监测模拟试题含解析_第1页
河南省临颍县联考2025届八下数学期末学业质量监测模拟试题含解析_第2页
河南省临颍县联考2025届八下数学期末学业质量监测模拟试题含解析_第3页
河南省临颍县联考2025届八下数学期末学业质量监测模拟试题含解析_第4页
河南省临颍县联考2025届八下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省临颍县联考2025届八下数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等.其中真命题的个数是().A.0 B.1 C.2 D.32.下列说法正确的是()A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯B.某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%C.“明天我市会下雨”是随机事件D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖3.若3x>﹣3y,则下列不等式中一定成立的是()A.x>y B.x<y C.x﹣y>0 D.x+y>04.如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=()A.60° B.65° C.70° D.75°5.如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处 B.二处 C.三处 D.四处6.关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点 B.y随x的增大而增大C.图象经过第二、四象限 D.当x=13时,y=7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2) B.(3,1) C.(2,2) D.(4,2)8.一组数据从小到大排列为1,2,4,x,6,1.这组数据的中位数是5,那么这组数据的众数为(

)A.4

B.5

C.5.5

D.69.如图,在矩形ABCD中,AD=+8,点E在边AD上,连BE,BD平分∠EBC,则线段AE的长是()A.2 B.3 C.4 D.510.若关于x的方程x2+5x+a=0有一个根为﹣2,则a的值是()A.6 B.﹣6 C.14 D.﹣14二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.12.在中,若∠A=38°,则∠C=____________13.计算的结果等于_______.14.已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.15.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.16.函数与的图象如图所示,则的值为____.17.如图,□ABCD的对角线AC,BD相交于点O,若AO+BO=5,则AC+BD的长是________.18.若方程的两根,则的值为__________.三、解答题(共66分)19.(10分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.20.(6分)在一张足够大的纸板上截取一个面积为的矩形纸板,如图,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形,如图,设小正方形的边长为厘米.、(1)若矩形纸板的一个边长为.①当纸盒的底面积为时,求的值;②求纸盒的侧面积的最大值;(2)当,且侧面积与底面积之比为时,求的值.21.(6分)如图,在平面直角坐标系中,▱ABCD,顶点A1,1,B5,1(1)点C的坐标是______,对角线AC与BD的交点E的坐标是______.(2)①过点A1,1的直线y=kx-3k+4的解析式是______②过点B5,1的直线y=kx-3k+4的解析式是______③判断①、②中两条直线的位置关系是______.(3)当直线y=kx-3k+4平分▱ABCD的面积时,k的值是______.(4)一次函数y=kx-2k+1的图像______(填“能”或“不能”)平分▱ABCD的面积.22.(8分)如图1,已知AB⊥CD,C是AB上一动点,AB=CD(1)在图1中,将BD绕点B逆时针方向旋转90°到BE,若连接DE,则△DBE为等腰直角三角形;若连接AE,试判断AE与BC的数量和位置关系并证明;(2)如图2,F是CD延长线上一点,且DF=BC,直线AF,BD相交于点G,∠AGB的度数是一个固定值吗?若是,请求出它的度数;若不是,请说明理由.23.(8分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:捐款金额(元)203050a80100人数(人)2816x47根据表中提供的信息回答下列问题:(1)x的值为________

,捐款金额的众数为________元,中位数为________元.(2)已知全班平均每人捐款57元,求a的值.24.(8分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为;(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;(3)求(2)中四边形ABCD的周长和面积.25.(10分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,求AC的长。26.(10分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.【详解】(1)如果a<0,b>0,那么a+b的值不确定,错误;(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;(3)同角的补角相等,正确;(4)直角都相等,正确;故真命题的个数是2个故答案为:C.【点睛】本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.2、C【解析】解:A.若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;B.某蓝球运动员2次罚球,投中一个,这是一个随机事件,但不能断定他罚球命中的概率一定为50%,故本选项错误;C.明天我市会下雨是随机事件,故本选项正确;D.某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故该选项错误.故选C.3、D【解析】

利用不等式的性质由已知条件可得到x+y>1,从而得到正确选项.【详解】∵3x>﹣3y,∴3x+3y>1,∴x+y>1.故选:D.【点睛】本题考查了不等式的性质:应用不等式的性质应注意的问题,在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于1进行分类讨论.4、D【解析】

由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.【详解】∵四边形ABCD是正方形,∴AB=AD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE(HL),∴∠BAF=∠DAE=90°-60°2=15°∴∠AED=75°,故选D.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.5、D【解析】

由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.6、C【解析】

根据正比例函数的性质直接解答即可.【详解】解:A、显然当x=0时,y=0,故图象经过原点,错误;B、k<0,应y随x的增大而减小,错误;C、k<0,图解经过二、四象限,正确;D、把x=13代入,得:y=-1故选C.【点睛】本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.7、A【解析】

∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.8、D【解析】分析:先根据中位数的定义可求得x,再根据众数的定义就可以求解.详解:根据题意得,(4+x)÷2=5,得x=2,则这组数据的众数为2.故选D.点睛:本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.9、B【解析】

根据二次根式的性质得到AB,AD的长,再根据BD平分∠EBC与矩形的性质得到∠EBD=∠ADB,故BE=DE,再利用勾股定理进行求解.【详解】解:∵AD=+8,∴AB=4,AD=8∵BD平分∠EBC∴∠EBD=∠DBC∵AD∥BC∴∠ADB=∠DBC∴∠EBD=∠ADB∴BE=DE在Rt△ABE中,BE2=AE2+AB2,∴(8﹣AE)2=AE2+16∴AE=3故选:B.【点睛】此题主要考查矩形的线段求解,解题的关键是熟知勾股定理的应用.10、A【解析】

根据一元二次方程的解的定义,把x=-2代入方程得到关于a的一次方程,然后解此一次方程即可.【详解】解:把x=﹣2代入方程x2+5x+a=0得4﹣5×2+a=0,解得a=1.故选A.【点睛】本题考查了一元二次方程的解,熟练掌握“有根必代原则”是解题的关键.二、填空题(每小题3分,共24分)11、(2,4),(8,4),(7,4),(7.5,4)【解析】

分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标【详解】当PD=DA

如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,

∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),

∴AD=PD=5,PE=P'F=4

∴根据勾股定理得:DE=DF=∴P(2,4),P'(8,4)

若AD=AP=5,同理可得:P(7,4)

若PD=PA,则P在AD的垂直平分线上,

∴P(7.5,4)

故答案为:(2,4),(8,4),(7,4),(7.5,4)【点睛】本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.12、38°【解析】

根据平行四边形对角相等即可求解.【详解】解:∵平行四边形ABCD中,∠A=38°,∴∠C=∠A=38°,故答案为:38°.【点睛】本题考查了平行四边形的性质,要知道平行四边形对角相等.13、2【解析】

先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算14、2或1【解析】

分高AE在△ABC内外两种情形,分别求解即可.【详解】①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,在Rt△AEC中,CE==5,∴BC=BE+EC=14,∴S平行四边形ABCD=BC×AE=14×12=1.②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,∴S平行四边形ABCD=BC×AE=12×4=2,故答案为1或2.【点睛】本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.15、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°16、1【解析】

将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.【详解】解:把x=1代入得:y=1,∴与的交点坐标为(1,1),

把x=1,y=1代入y=kx得k=1.

故答案是:1.【点睛】本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.17、1;【解析】

根据平行四边形的性质可知:AO=OC,BO=OD,从而求得AC+BC的长.【详解】∵四边形ABCD是平行四边形∴OC=AO,OB=OD∵AO=BO=2∴OC+OD=2∴AC+BD=AO+BO+CO+DO=1故答案为:1.【点睛】本题考查平行四边形的性质,解题关键是得出OC+OD=2.18、1【解析】

根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=1,故答案为:1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.三、解答题(共66分)19、(1)y=(2)75(千米/小时)【解析】

(1)先根据图象和题意知道,甲是分段函数,所以分别设0<x≤6时,y=k1x;6<x≤14时,y=kx+b,根据图象上的点的坐标,利用待定系数法可求解.

(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.【详解】(1)①当0<x≤6时,设y=k1x把点(6,600)代入得k1=100所以y=100x;②当6<x≤14时,设y=kx+b∵图象过(6,600),(14,0)两点∴6解得k=-∴y=−75x+1050∴y=(2)当x=7时,y=−75×7+1050=525,V乙=5257=75(千米/小时20、(1)①12;②当时,;(2)1【解析】

(1)①根据题意列方程求解即可;②一边长为90cm,则另一边长为40cm,列出侧面积的函数解析式,配方可得最值;(2)由EH:EF=7:2,设EF=2m、EH=7m,根据侧面积与底面积之比为9:7建立方程,可得m=x,由矩形纸板面积得出x的值.【详解】(1)①矩形纸板的一边长为,矩形纸板的另一边长为,(舍去)②,当时,.(2)设EF=2m,则EH=7m,则侧面积为2(7mx+2mx)=18mx,底面积为7m•2m=14m2,由题意,得18mx:14m2=9:7,∴m=x.则AD=7x+2x=9x,AB=2x+2x=4x由4x•9x=3600,且x>0,∴x=1.【点睛】本题主要考查二次函数的应用,根据矩形的面积公式列出面积的函数表达式或方程是解题的关键.21、(1)3,-1;(2)①y=32x-12;②y=-32x+172;【解析】

(1)根据平行四边形的性质以及A、B两点的坐标可得CD∥AB∥x轴,CD=AB=1,再利用平移的性质得出点C的坐标;根据平行四边形的对角线互相平分得出E是BD的中点,再利用线段的中点坐标公式求出点E的坐标;(2)①将点A(1,1)代入y=kx-3k+1,求出k的值即可;②将点B(5,1)代入y=kx-3k+1,求出k的值即可;③将两直线的解析式联立组成方程组:y=32x-(3)当直线y=kx-3k+1平分▱ABCD的面积时,直线y=kx-3k+1经过▱ABCD对角线的交点E(2,0),将E点坐标代入y=kx-3k+1,求出k的值即可;(1)将x=2代入y=kx-2k+1,求出y=1≠0,即直线y=kx-2k+1不经过▱ABCD对角线的交点E(2,0),即可判断一次函数y=kx-2k+1的图象不能平分▱ABCD的面积.【详解】解:(1)∵四边形ABCD是平行四边形,A(1,1),B(5,1),∴CD∥AB∥x轴,CD=AB=1,∵D(-1,-1),∴点C的坐标是(-1+1,-1),即(3,-1),∵E是对角线AC与BD的交点,∴E是BD的中点,∵B(5,1),D(-1,-1),∴点E的坐标是(2,0).故答案为(3,-1),(2,0);(2)①将点A(1,1)代入y=kx-3k+1,得1=k-3k+1,解得k=则所求的解析式是y=故答案为:y=②将点B(5,1)代入y=kx-3k+1,得1=k-3k+1,解得k=-则所求的解析式是y=-故答案为:y=-③由y=32∴①、②中两条直线的位置关系是相交,交点是(3,1).故答案为:相交;(3)∵直线y=kx-3k+1平分▱ABCD的面积时,∴直线y=kx-3k+1经过▱ABCD对角线的交点E(2,0),∴0=2k-3k+1,解得k=1.故答案为:1;(1)∵x=2时,y=kx-2k+1=1≠0,∴直线y=kx-2k+1不经过▱ABCD对角线的交点E(2,0),∴一次函数y=kx-2k+1的图象不能平分▱ABCD的面积.故答案为:不能.【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了平行四边形的性质,一次函数的性质,一次函数图象上点的坐标特征,线段的中点坐标公式等知识.22、(1)AE=BC,AE⊥BC,证明见解析;(2)∠AGB的度数是固定值,度数为45°.【解析】

(1)结论:AE=BC,AE⊥BC.根据角的和差关系可得∠ABE=∠BDC,利用SAS证明△ABE≌△BDC,再利用全等三角形的性质得出AE=BC,∠BAE=∠BCD=90°,即可解决问题;(2)如图,作AE⊥AB于A,使AE=BC,连结DE,BE.利用SAS可证明△ABE≌△BDC,再利用全等三角形的性质得出BE=BD,∠EBD=90°,可得出∠EDB=∠AGB=45°.即可得答案.【详解】(1)结论:AE=BC,AE⊥BC.理由如下:∵AB⊥CD,将BD绕点B逆时针方向旋转90°到BE,∴∠BCD=∠EBD=90°,∴∠ABE+∠DBC=90°,∠DBC+∠BDC=90°,∴∠ABE=∠BDC,在△ABE和△CDB中,,∴△ABE≌△CDB(SAS),∴AE=BC,∠BAE=∠BCD=90°,∴AE⊥BC,∴AE与BC的数量和位置关系是AE=BC,AE⊥BC.(2)∠AGB的度数是固定值,∠AGB=45°.理由如下:如图,作AE⊥AB于A,使AE=BC,连结DE,BE.∵AE⊥AB,∠BCD=90°,∴∠BAE=∠BCD=90°,在Rt△BAE和Rt△DCB中,,∴△BAE≌△DCB(SAS),∴BE=BD,∠ABE=∠BDC,∵∠BDC+∠DBC=90°,∴∠ABE+∠DBC=90°,∴∠EBD=90°,∴△BED是等腰直角三角形,∴∠EDB=45°∵∠BAE=∠ACD=90°,∴AE∥DF,∵AE=BC,BC=DF,∴AE=DF,∴四边形AFDE是平行四边形,∴AF∥DE∴∠AGB=∠EDB=45°.∴∠AGB的度数是固定值,∠AGB=45°.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定与性质及等腰三角形的性质,正确作出辅助线并熟练掌握全等三角形及平行四边形的判定定理是解题关键.23、(1)3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论