




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市呼兰区2025届八下数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.上复习课时李老师叫小聪举出一些分式的例子,他举出了:,,其中正确的个数为().A.2 B.3 C.4 D.52.已知反比例函数y=6x的图像上有两点A(a-3,2b)、B(a,b-2),且a<0,则b的取值范围是(▲A.b<2 B.b<0 C.-2<b<0 D.b<-23.将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是()A.y=2x B.y=2x+2 C.y=2x﹣4 D.y=2x+44.如图,四边形ABCD是正方形,延长BA到点E,使BE=BD,则∠ADE等于(
)A.15.5°
B.22.5°
C.45°
D.67.5°5.函数中,自变量x的取值范围是()A.x>1 B.x<1 C. D.6.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为A.12 B.9 C.6 D.47.如图图中,不能用来证明勾股定理的是()A. B. C. D.8.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量一组对角是否为直角D.测量两组对边是否相等,再测量对角线是否相等9.在四边形ABCD中,对角线AC、BD交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AD∥BC,AD=BCC.AB∥DC,AD=BC D.OA=OC,OD=OB10.如图,在中,,若.则正方形与正方形的面积和为()A.25 B.144 C.150 D.169二、填空题(每小题3分,共24分)11.已知,是关于的方程的两根,且满足,那么的值为________.12.如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。13.甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)14.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.15.如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是.16.若有意义,则x的取值范围是____.17.在菱形ABCD中,M是AD的中点,AB=4,N是对角线AC上一动点,△DMN的周长最小是2+,则BD的长为___________.18.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.三、解答题(共66分)19.(10分)四边形为正方形,点为线段上一点,连接,过点作,交射线于点,以、为邻边作矩形,连接.(1)如图,求证:矩形是正方形;(2)当线段与正方形的某条边的夹角是时,求的度数.20.(6分)某校组织春游活动,提供了A、B、C、D四个景区供学生选择,并把选择最多的景区作为本次春游活动的目的地。经过抽样调查,并将采集的数据绘制成如下两幅不完整的统计图,请根据图①、②所提供的信息,解答下列问题:(1)本次抽样调查的学生有______名,其中选择景区A的学生的频率是______:(2)请将图②补充完整:(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择景区C?(要有解答过程)21.(6分)已知:直线始终经过某定点.(1)求该定点的坐标;(2)已知,,若直线与线段相交,求的取值范围;(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.22.(8分)分解因式(1)20a3-30a2(2)25(x+y)2-9(x-y)223.(8分)解方程:+=1.24.(8分)如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.25.(10分)涡阳某童装专卖店在销售中发现,一款童装每件进价为元,销售价为元时,每天可售出件,为了迎接“六-一”儿童节,商店决定采取适当的降价措施,以扩大销售增加利润,经市场调查发现,如果每件童装降价元,那么平均可多售出件.(1)若每件童装降价元,每天可售出
件,每件盈利
元(用含的代数式表示);每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利元.26.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【详解】解:在,中,是分式,只有3个,
故选:B.【点睛】本题考查了分式,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2、C【解析】
先根据k>0判断出在每个象限内,y随x的增大而减小,且图象在第一、三象限,再根据a-3<a<0判断出点A、B都在第三象限,然后根据反比例函数的性质得2b>b-2即可.【详解】∵反比例函数y=6x中k=6>∴在每个象限内,y随x的增大而减小,且图象在第一、三象限.∵a<0,∴a-3<a<0,∴0>2b>b-2,∴-2<b<0.故选:C.【点睛】本题考查了反比例函数的增减性,利用反比例函数的增减性比较大小时,一定要注意“在每一个象限内”比较大小.3、A【解析】
根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【详解】解:y=2(x﹣2)+4=2x.故选A.【点睛】本题考查一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.4、B【解析】
由正方形的对角线平分对角得∠DBE=45°,再由BE=BD,等边对等角结合三角形内角和求出∠BDE,最后由∠BDE和∠BDA之差求得∠ADE.【详解】∵四边形ABCD为正方形,∴∠DBE=45°,又∵BD=BE,∴△BDE为等腰三角形,∴∠BDE=(180°-45°)÷2=67.5,∴∠ADE=∠BDE-∠BDA=90°-67.5°=22.5°,故答案为:B.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰三角形与正方形的性质.5、C【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故选C.6、B【解析】∵点,是中点∴点坐标∵在双曲线上,代入可得∴∵点在直角边上,而直线边与轴垂直∴点的横坐标为-6又∵点在双曲线∴点坐标为∴从而,故选B7、D【解析】
根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.【详解】A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.【点睛】此题主要考查了勾股定理的证明方法,根据图形面积得出是解题关键.8、D【解析】
根据矩形和平行四边形的判定推出即可得答案.【详解】A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;C、根据一组对角是否为直角不能得出四边形的形状,故本选项错误;D、根据对边相等可得出四边形是平行四边形,根据对角线相等的平行四边形是矩形可得出此时四边形是矩形,故本选项正确;故选D.【点睛】本题考查的是矩形的判定定理,矩形的判定定理有①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的平行四边形是矩形.牢记这些定理是解题关键.9、C【解析】
根据平行四边形的判定方法逐一进行分析判断即可.【详解】A.AB=DC,AD=BC,根据两组对边分别平行的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;B.AD∥BC,AD=BC,根据一组对边平行且相等的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意;C.AB∥DC,AD=BC,一组对边平行,另一组对边平行的四边形可能是平行四边形也可能是等腰梯形,故符合题意;D.OA=OC,OD=OB,根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD是平行四边形,故不符合题意,故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.10、D【解析】
根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.【详解】在Rt△ABC中,AC2+BC2=AB2=169,则正方形与正方形的面积和=AC2+BC2=169,故选D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.二、填空题(每小题3分,共24分)11、或【解析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.12、【解析】
把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:【详解】解:把点A(2,2)代入得:∴k=4∴当y=3时∴∴B()由函数图像可知的解集是:【点睛】本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.13、<【解析】
分别求出甲、乙两个班级的成绩平均数,然后根据方差公式求方差作比较即可.【详解】解:甲班20名男生引体向上个数为5,6,7,8的人数都是5,乙班20名男生引体向上个数为5和8的人数都是6个,个数为6和7的人数都是4个,∴甲班20名男生引体向上的平均数=,乙班20名男生引体向上的平均数=,∴,,∴,故答案为:<.【点睛】本题考查了方差的计算,熟练掌握方差公式是解题关键.14、6【解析】
由题意得,∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△AOP与△CDO中,,∴△AOP≌△CDO(AAS),∴AP=CO=AC﹣AO=9﹣3=6.故答案为6.15、6cm.【解析】试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.故答案为6cm.考点:相似三角形的判定与性质.16、x≥1.【解析】
直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥1,故答案为:x≥1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.17、4【解析】
根据题意,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,由DM=,则BM=,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD为等边三角形,即可得到BD的长度.【详解】解:如图:连接BD,BM,则AC垂直平分BD,则BN=DN,当B、N、M三点在同一条直线时,△DMN的周长最小为:BM+DM=2+,∵AD=AB=4,M是AD的中点,∴AM=DM=,∴BM=,∵,∴△ABM是直角三角形,即∠AMB=90°;∵BM是△ABD的中线,∴△ABD是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD是等边三角形.18、1【解析】
要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.三、解答题(共66分)19、∠EFC=125°或145°.【解析】
(1)首先作EP⊥CD于P,EQ⊥BC于Q,由∠DCA=∠BCA,得出EQ=EP,再由∠QEF+∠FEC=45°,得出∠PED+∠FEC=45°,进而得出∠QEF=∠PED,即可判定Rt△EQF≌Rt△EPD,得出EF=ED,即可得证;(2)分类讨论:①当DE与AD的夹角为35°时,∠EFC=125°;②当DE与DC的夹角为35°时,∠EFC=145°,即可得解.【详解】(1)作EP⊥CD于P,EQ⊥BC于Q,如图所示∵∠DCA=∠BCA∴EQ=EP,∵∠QEF+∠FEP=90°,∠PED+∠FEP=90°,∴∠QEF=∠PED在Rt△EQF和Rt△EPD中,∴Rt△EQF≌Rt△EPD∴EF=ED∴矩形DEFG是正方形;(2)①当DE与AD的夹角为35°时,∠DEP=∠QEF=35°,∴∠EFQ=90°-35°=55°,∠EFC=180°-55°=125°;②当DE与DC的夹角为35°时,∠DEP=∠QEF=55°,∴∠EFQ=90°-55°=35°,∠EFC=180°-35°=145°;综上所述,∠EFC=125°或145°.【点睛】此题主要考查正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.20、(1)180,;(2)见解析;(3)全校选择景区C的人数是480人.【解析】
(1)根据D组所对应的圆心角即可求得对应的比例,利用D组的人数除以对应的比例即可求得抽查的总人数,然后根据频率定义求解;(2)利用总人数减去其它组的人数即可求得C组人数,补全直方图;(3)利用总人数乘以对应的比例即可求解.【详解】解:(1)抽查的人数是42÷=180(人),选择景区A的学生的频率是:=,故答案是:180,;(2)C组的人数是180-36-30-42=72(人);(3)估计有(人),答:全校选择景区C的人数是480人.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21、(1);(2);(3)或.【解析】
(1)对题目中的函数解析式进行变形即可求得点的坐标;(2)根据题意可以得到相应的不等式组,从而可以求得的取值范围;(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得的取值范围.【详解】(1),当时,,即为点;(2)点、坐标分别为、,直线与线段相交,直线恒过某一定点,,解得,;(3)当时,直线中,随的增大而增大,当时,,以、、为长度的3条线段能围成三角形,,得,;当时,直线中,随的增大而减小,当时,,以、、为长度的3条线段能围成三角形,,得,,由上可得,或.【点睛】本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.22、(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a3﹣30a2=10a2(2a﹣3)(2)解:25(x+y)2﹣9(x﹣y)2=[5(x+y)+3(x﹣y)][5(x+y)﹣3(x﹣y)]=(8x+2y)(2x+8y);=4(4x+y)(x+4y).点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).23、【解析】
试题分析:解:+=1经检验:是原方程的解.【点睛】本题考查解分式方程,只需学生熟练掌握解方程的一般步骤,即可完成,注意分式方程结果要检验.24、(1)y=x+5;(2);(1)x>-1.【解析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45512-2025纺织品定量化学分析聚苯并咪唑纤维与某些其他纤维的混合物
- GB/T 18867-2025电子气体六氟化硫
- 高考语文社会责任试题及答案
- 高考作文情感认知的试题与答案
- 火灾报警的应急预案(3篇)
- 行政法学重要案例分析及试题
- 商场高层火灾应急预案范文(3篇)
- 2025年程序员考试复习秘籍试题及答案
- 2025年法学概论考试的应试准备与试题及答案
- 行政法与公共管理理论的结合剖析试题及答案
- 思想道德修养与法律基础(完整版PPT)
- 全文解读中国式现代化解读学习PPT
- 动物英语俚语课件
- 幼儿园课件-神奇的中草药
- 金坛区苏科版六年级心理健康教育第18课《中学遐想》课件(定稿)
- 小学生民法典主题班会PPT
- 抗滑桩施工监测监控措施
- 甲状腺的外科治疗与病ppt课件
- 国家开放大学《课程与教学论》形考任务1-4参考答案
- 败血症PPT优质课件
- 万寿菊提取物项目运营方案【参考范文】
评论
0/150
提交评论