山东旅游职业学院《计算与人工智能》2023-2024学年第二学期期末试卷_第1页
山东旅游职业学院《计算与人工智能》2023-2024学年第二学期期末试卷_第2页
山东旅游职业学院《计算与人工智能》2023-2024学年第二学期期末试卷_第3页
山东旅游职业学院《计算与人工智能》2023-2024学年第二学期期末试卷_第4页
山东旅游职业学院《计算与人工智能》2023-2024学年第二学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页山东旅游职业学院

《计算与人工智能》2023-2024学年第二学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、当利用人工智能进行音乐创作,生成具有创新性和艺术价值的音乐作品,以下哪种方法和技术可能会被运用?()A.基于模板的生成B.基于风格迁移C.基于生成模型D.以上都是2、在人工智能的可解释性研究中,对于一个复杂的深度学习模型,假设需要向用户解释模型的决策依据和输出结果。以下哪种方法能够提供更直观和易于理解的解释?()A.特征重要性分析,确定输入特征对输出的影响B.可视化中间层的激活值C.生成文本解释,描述模型的推理过程D.以上都是3、人工智能中的联邦学习技术旨在保护数据隐私的同时实现模型训练。假设多个机构想要联合训练一个人工智能模型,同时保护各自的数据隐私,以下关于联邦学习的描述,正确的是:()A.联邦学习可以在不共享原始数据的情况下,直接合并各机构的模型参数进行训练B.联邦学习过程中不存在通信开销和安全风险C.采用加密技术和模型参数交换的方式,联邦学习能够在保护数据隐私的前提下协同训练模型D.联邦学习只适用于小规模的数据和简单的模型,对于大规模和复杂的任务不适用4、在人工智能的伦理原则中,公平性是一个重要的考量因素。假设我们要开发一个用于招聘的人工智能系统,以下关于确保公平性的方法,哪一项是不正确的?()A.对数据进行预处理,消除潜在的偏差B.透明公开算法的工作原理和决策依据C.不考虑候选人的背景信息,只根据能力评估D.完全依赖人工智能系统的决策,不进行人工干预5、在人工智能的研究中,模型的评估指标对于衡量模型性能非常重要。假设要评估一个图像分类模型的性能。以下关于评估指标的描述,哪一项是不准确的?()A.准确率是常用的评估指标之一,表示正确分类的样本比例B.召回率衡量了模型能够正确识别正例的能力C.F1分数综合考虑了准确率和召回率,是一个更全面的评估指标D.只要模型的准确率高,就说明模型在实际应用中一定表现良好6、在人工智能的强化学习应用中,比如训练一个智能体在游戏中获得高分,以下哪个因素对于学习效果和收敛速度可能具有重要影响?()A.奖励函数的设计B.策略网络的架构C.环境的复杂度D.以上都是7、知识图谱在人工智能中用于整合和表示知识。假设要构建一个关于历史事件的知识图谱,以下关于知识图谱构建的描述,正确的是:()A.可以随意收集和整合信息,无需对知识的准确性和可靠性进行验证B.知识图谱的结构和关系定义不重要,只要包含大量的数据就行C.构建知识图谱需要对知识进行精心的组织和关联,以支持有效的查询和推理D.知识图谱一旦构建完成,就无需更新和维护,因为知识是固定不变的8、人工智能在智能交通系统中的应用可以改善交通流量和安全性。假设要开发一个能够实时优化交通信号灯的系统,以下关于考虑交通状况多样性的方法,哪一项是最关键的?()A.只考虑当前道路的车流量,不考虑周边道路的情况B.综合考虑不同时间段、天气条件和特殊事件等对交通的影响C.按照固定的模式设置交通信号灯,不进行实时调整D.忽略行人的需求,只关注车辆的通行9、在人工智能的研究中,算法的选择和优化至关重要。假设要解决一个复杂的优化问题。以下关于人工智能算法的描述,哪一项是不准确的?()A.遗传算法通过模拟生物进化过程来寻找最优解B.蚁群算法受蚂蚁觅食行为启发,适用于求解组合优化问题C.不同的算法适用于不同类型的问题,没有一种算法能够通用于所有情况D.算法的性能只取决于其理论复杂度,与实际应用中的数据特点和计算环境无关10、人工智能在智能家居领域的应用不断丰富。假设一个智能家居系统要利用人工智能实现自动化控制,以下关于其应用的描述,哪一项是不正确的?()A.根据家庭成员的习惯和环境条件,自动调整灯光、温度和家电设备B.利用语音识别和自然语言处理技术,实现与用户的自然交互C.人工智能可以完全理解用户的所有需求和意图,不会出现误解D.结合传感器数据和机器学习算法,实现能源的高效管理和节约11、人工智能中的模型压缩技术用于减少模型的参数和计算量。假设要在资源受限的设备上部署一个大型的神经网络模型,以下关于模型压缩的描述,正确的是:()A.剪枝技术通过删除不重要的神经元和连接来压缩模型,不会影响模型性能B.量化技术将模型的参数从浮点数转换为整数,会导致较大的精度损失C.知识蒸馏将复杂模型的知识转移到简单模型中,但效果不如直接使用复杂模型D.模型压缩技术会牺牲一定的模型性能,但可以显著提高模型的部署效率12、在人工智能的发展历程中,机器学习算法起到了关键作用。假设我们要开发一个能够预测股票价格走势的模型,需要处理大量的历史交易数据和财务报表等信息。以下关于选择机器学习算法的考虑,哪一项是最为重要的?()A.选择简单直观的线性回归算法,因为其易于理解和解释B.采用复杂的深度学习算法,如卷积神经网络,以捕捉数据中的复杂模式C.运用决策树算法,其能够生成易于理解的规则D.随机选择一种算法,碰碰运气13、在深度学习中,BatchNormalization的作用是()A.加速训练B.防止过拟合C.提高模型精度D.以上都是14、人工智能在金融领域的应用不断拓展,假设一个银行使用人工智能系统进行信用评估,以下关于这种应用的描述,正确的是:()A.人工智能信用评估系统能够完全取代人工评估,不会出现任何错误B.数据的质量和特征选择对人工智能信用评估系统的准确性至关重要C.人工智能信用评估系统只考虑客户的财务数据,不考虑其他非财务因素D.银行不需要对人工智能信用评估系统的结果进行审核和监督15、人工智能在智能客服领域的应用需要能够理解用户的复杂问题并给出准确的回答。假设要构建一个智能客服系统,能够处理多种领域的问题,以下哪种技术或方法在提高系统的泛化能力和回答准确性方面最为重要?()A.大规模预训练语言模型B.基于模板的回答生成C.知识库的构建和维护D.以上方法同等重要二、简答题(本大题共3个小题,共15分)1、(本题5分)简述人工智能系统的安全性考量。2、(本题5分)简述规则推理和基于案例的推理。3、(本题5分)简述深度强化学习的进展和应用。三、操作题(本大题共5个小题,共25分)1、(本题5分)在PyTorch中,构建一个变分自编码器(VAE)对图像数据集进行生成和重构。通过潜在空间的采样生成新的图像,比较生成图像与原始图像的相似度。2、(本题5分)使用Python中的Scikit-learn库,实现BIRCH聚类算法对大规模数据进行快速聚类,评估算法在处理大数据时的效率和效果。3、(本题5分)使用机器学习算法对气象数据进行预测,如预测未来的气温、降雨量等,分析不同算法的性能。4、(本题5分)运用Python中的OpenCV库,实现对多摄像头视频的同步处理和分析,例如检测不同视角下的同一目标。5、(本题5分)使用机器学习算法对气象数据进行分析,预测极端天气事件的发生概率,为防灾减灾提供支

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论