福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题含解析_第1页
福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题含解析_第2页
福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题含解析_第3页
福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题含解析_第4页
福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福安市环城区片区2025届八年级数学第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列分解因式,正确的是()A. B.C. D.2.不等式组12(x+2)-3>0x>m的解集是x>4A.m≤4 B.m<4 C.m≥4 D.m>43.用反证法证明:“中,若.则”时,第一步应假设()A. B. C. D.4.如图,矩形中,,,、分别是边、上的点,且与之间的距离为4,则的长为()A.3 B. C. D.5.如图,在矩形中,点的坐标为,则的长是()A. B. C. D.6.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.6,8,11 D.7,24,257.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.8.某商务酒店客房有间供客户居住.当每间房每天定价为元时,酒店会住满;当每间房每天的定价每增加元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出元的费用.当房价定为多少元时,酒店当天的利润为元?设房价定为元,根据题意,所列方程是()A. B.C. D.9.若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.010.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里 B.45海里 C.20海里 D.30海里11.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm12.下列各组数中,不能构成直角三角形的是()A.a=1,b=,c= B.a=5,b=12,c=13 C.a=1,b=,c= D.a=1,b=1,c=2二、填空题(每题4分,共24分)13.如果反比例函数的图象在当的范围内,随着的增大而增大,那么的取值范围是________.14.设的整数部分为,小数部分为,则的值等于________.15.数据-2,-1,0,1,2,4的中位数是________

。16.计算6-15的结果是______.17.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为_____.18.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.三、解答题(共78分)19.(8分)在矩形ABCD中,E是AD延长线上一点,F、G分别为EC、AD的中点,连接BG、CG、BE、FG.(1)如图1,①求证:BG=CG;②求证:BE=2FG;(2)如图2,若ED=CD,过点C作CH⊥BE于点H,若BC=4,∠EBC=30°,则EH的长为______________.20.(8分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.使用次数人数(1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.(2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.21.(8分)我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明)中,,将沿翻折至,连结.结论1:与重叠部分的图形是等腰三角形;结论2:.试证明以上结论.(应用与探究)在中,已知,,将沿翻折至,连结.若以、、、为顶点的四边形是正方形,求的长.(要求画出图形)22.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,1),B(-1,3),C(-1,1)(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△A1B1C1;平移△ABC,若A对应的点A2坐标为((2)若△A1B1C(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;23.(10分)已知,关于x的一次函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象交x轴于点(,0)?(2)k为何值时,y随x增大而增大?24.(10分)化简:(1)(2)25.(12分)(1)如图1,方格纸中的每个小方格都是边长为1个单位的正方形,的顶点以及点均在格点上.①直接写出的长为______;②画出以为边,为对角线交点的平行四边形.(2)如图2,画出一个以为对角线,面积为6的矩形,且和均在格点上(、、、按顺时针方向排列).(3)如图3,正方形中,为上一点,在线段上找一点,使得.(要求用无刻度的直尺画图,不准用圆规,不写作法,保留画图痕迹)26.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:表1演讲答辩得分表(单位:分)ABCDE甲9092949588乙8986879491表2民主测评票数统计表(单位:张)“好”票数“较好”票数“一般”票数甲4073乙4244规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;综合得分=演讲答辩得分×(1﹣a)+民主测评得分×a(0.5≤a≤0.8).(1)当a=0.6时,甲的综合得分是多少?(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?

参考答案一、选择题(每题4分,共48分)1、B【解析】

把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A.和因式分解正好相反,故不是分解因式;B.是分解因式;C.结果中含有和的形式,故不是分解因式;D.x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.2、A【解析】

求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,结合不等式组的解集即可得答案.【详解】解不等式12(x+2)﹣3>0,得:x>4由不等式组的解集为x>4知m≤4,故选A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、B【解析】

熟记反证法的步骤,直接选择即可【详解】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.故选:B【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.

反证法的步骤是:

(1)假设结论不成立;

(2)从假设出发推出矛盾;

(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4、D【解析】

过点D作DG⊥BE,垂足为G,则GD=4=AB,∠G=90°,再利用AAS证明△AEB≌△GED,根据全等三角形的性质可得AE=EG.设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得可得方程x2+42=(5﹣x)2,解方程求得x的值即可得AE的长.【详解】过点D作DG⊥BE,垂足为G,如图所示:则GD=4=AB,∠G=90°,∵四边形ABCD是矩形,∴AD=BC=5,∠A=90°=∠G,在△AEB和△GED中,∴△AEB≌△GED(AAS).∴AE=EG.设AE=EG=x,则ED=5﹣x,在Rt△DEG中,由勾股定理得:ED2=EG2+GD2,∴x2+42=(5﹣x)2,解得:x=,即AE=.故选D.【点睛】本题考查了矩形的性质、全等三角形的判定与性质及勾股定理,正确作出辅助线,证明AE=EG是解决问题的关键.5、C【解析】

连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,

∵点B的坐标是(1,4),

∴OM=1,BM=4,由勾股定理得:OB=,

∵四边形OABC是矩形,

∴AC=OB,

∴AC=,

故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.6、D【解析】

将两短边的平方相加,与最长边的平方进行比较,由此即可得出结论.【详解】解:A、∵22+32=13,42=16,13≠16,∴以2、3、4为边长的三角形不是直角三角形;B、∵32+42=25,62=36,25≠36,∴以3、4、6为边长的三角形不是直角三角形;C、∵62+82=100,112=121,100≠121,∴以6、8、11为边长的三角形不是直角三角形;D、∵72+242=625,252=625,625=625,∴以7、24、24为边长的三角形是直角三角形.故选:D.【点睛】本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.7、D【解析】

根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.是中心对称图形,不是轴对称图形,选项不符合题意;

B.是轴对称图形,不是中心对称图形,选项不符合题意;

C.不是中心对称图形,也不是轴对称图形,选项不符合题意;

D.是中心对称图形,也是轴对称图形,选项符合题意,

故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.8、D【解析】

设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【详解】设房价定为x元,根据题意,得故选:D.【点睛】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.9、A【解析】

直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x1﹣4=0,解得:x=1或﹣1.故选A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.10、D【解析】

根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.11、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.12、D【解析】

根据勾股定理的逆定理对四组数据进行逐一判断即可.【详解】A、∵12+()2=()2,∴能构成直角三角形,不符合题意;B、∵52+122=132,,∴能构成直角三角形,不符合题意;C、∵12+32=()2,∴能构成直角三角形,不符合题意;D、∵12+12≠22,∴不能构成直角三角形,符合题意,故选D.【点睛】本题考查的是用勾股定理的逆定理判断三角形的形状,通常是看较小的两边的平方和是否等于最长边的平方,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.二、填空题(每题4分,共24分)13、【解析】

根据反比例函数图象在当x>0的范围内,y随着x的增大而增大,可知图象在第四象限有一支,由此确定反比例函数的系数(k-2)的符号.【详解】解:∵当时,随着的增大而增大,∴反比例函数图象在第四象限有一支,∴,解得,故答案为:.【点睛】本题考查了反比例函数的性质.对于反比例函数,(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.14、2-【解析】

根据题意先求出a和b,然后代入化简求值即可.【详解】解:∵2<<3,∴a=2,b=﹣2,∴.故答案为2﹣.【点睛】二次根式的化简求值是本题的考点,用到了实数的大小比较,根据题意求出a和b的值是解题的关键.15、【解析】

根据中位数的定义即可得.【详解】中位数为(0+1)÷2=.故答案是:.【点睛】考查中位数,掌握:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.16、6-【解析】

直接化简二次根式进而得出答案.【详解】解:原式=6-15×,=6-.故答案为:6-.【点睛】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.17、﹣2<x<2【解析】

先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【详解】∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为故答案为【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.18、612.【解析】

先由勾股定理求出BC的长为12m,再用(AC+BC)乘以2乘以18即可得到答案【详解】如图,∵∠C=90,AB=13m,AC=5m,∴BC==12m,∴(元),故填:612.【点睛】此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.三、解答题(共78分)19、(1)①见解析,②见解析;(2)【解析】

(1)①由G是AD的中点得到GA=GD,再证明△CDG≌△BAG即可;②取BC的中点M,连接MF,GM,DF,在Rt△DCF中由斜边上的中线等于斜边的一半求出DF=MF,进而证明△GDF≌△MCF,得到GF=MF,再由MF是△BCE的中位线即可求解;(2)设DE=DC=AB=x,则AE=4+x,在Rt△ABE中由AB²+AE²=BE²求出x,进而求出BE的长,再在Rt△BHC中,求出CH=,进而求出BH,再用BE-BH即可求解.【详解】解:(1)①证明∵ABCD是矩形,∴∠A=∠D=90°,AB=CD又∵G是AD的中点,∴AG=DG在△BAG和△CDG中,∴△BAG≌△CDG(SAS),∴BG=CG;②证明:取BC的中点M,连接MF,GM,DF,如下图所示,∵F是直角△EDC斜边EC上的中点,∴FD=FE=FC,∴∠FDC=∠FCD,且∠GDF=∠GDC+∠FDC=90°+∠FDC,∠MCF=∠MCD+∠FCD=90°+∠FCD,∴∠GDF=∠MCF,又M、G分别是AD和BC的中点,∴MC=GD,在△GDF和△MCF中:,∴△GDF≌△MCF(SAS),∴GF=MF,又∵M、F分别BC和CE的中点,∴MF是△CBE的中位线,∴BE=2MF,故BE=2GF;(2)由题意可知,∠AEB=∠EBC=30°,设DE=DC=AB=x,则AE=AD+DE=BC+DE=4+x,由30°角所对的直角边等于斜边的一半知,BE=2AB=2x,在Rt△ABE中,由AB²+AE²=BE²可知,x²+(4+x)²=(2x)²,解得x=(负值舍去),∴BE=2x=,在Rt△BHC中,CH=BC=2,∴BH=,∴HE=BE-BH=,故答案为:.【点睛】本题考查了矩形的性质,三角形全等的判定方法,勾股定理,30°角所对直角边等于斜边的一半等,熟练掌握其定理及性质是解决本题的关键.20、(1)中位数是次,众数是次;(2)人.【解析】

(1)根据平均数、中位数和众数的定义求解可得;(2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.【详解】(1)(次)次数从小到大排列后,中间两个数是与中位数是次共享单车的使用次数中,出现最多的是次众数是次(2)即该校这天使用共享单车次数在次以上(含次)的学生约有人.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.21、【发现与证明】结论1:见解析,结论1:见解析;【应用与探究】AC的长为或1.【解析】

【发现与证明】由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;【应用与探究】:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=1.【详解】【发现与证明】:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=11(180°−∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;【应用与探究】:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,∴AC=;②如图1所示:AC=BC=1;综上所述:AC的长为或1.【点睛】本题考查平行四边形的性质,正方形的性质,翻折变换(折叠问题).【发现与证明】对于结论1,要证明三角形是等腰三角形,只需要证明它的两条边相等,而在同一个三角形内要证明两条线段相等只需要证明它们所对应的角相等(即用等角对等边证明).结论1:要证明两条线段平行,本题用到了内错角相等,两直线平行.所以解决【发现与证明】的关键是根据已知条件找到对应角之间的关系.【应用与探究】折叠时,因为正方形的四个角都是直角,所以对应线段之间存在共线情况,所以分BA和AB’共线和BC和B’C两种情况讨论,能根据题意画出两种情况对应的图形,是解题关键.22、(1)见解析(2)(-1,-2)(3)P(-134,0)【解析】

(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.【详解】(1)如图所示,△A1B1C(2)如图所示,点Q即为所求,坐标为(-1,-2)(3)如图所示,P即为所求,设A’B的解析式为y=kx+b,将A’(-4,-1),B(-1,3)代入得-1=-4k+b解得k=∴A’B的解析式为y=43x+13当y=0,时,43x+133=0,解得∴P(-134,0)【点睛】此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.23、(1)k=﹣1;(2)【解析】

(1)把点(,0)代入y=(1﹣3k)x+2k﹣1,列出关于k的方程,求解即可;(2)根据1﹣3k>0时,y随x增大而增大,解不等式求出k的取值范围即可.【详解】解:(1)∵关于x的一次函数y=(1﹣3k)x+2k﹣1的图象交x轴于点(,0),∴(1﹣3k)+2k﹣1=0,解得k=﹣1;(2)1﹣3k>0时,y随x增大而增大,解得.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.24、(1);(2).【解析】

(1)根据平方差公式和提公因式法,对分式进行化简即可(2)利用完全平方公式和平方差公式,进行化简,再对括号里面的分式进行通分约分,再把除法转化为乘法,即可解答【详解】(1)原式或:原式(2)原式【点睛】此题考查分式的化简求值,掌握运算法则是解题关键25、解:(1)①;②详见解析;(2)详见解析;(2)详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论