




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省临清市八年级数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为()A.56 B.192C.20 D.以上答案都不对2.如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.8 B.6 C.9 D.103.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班 B.(2)班 C.(3)班 D.(4)班4.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③.其中不正确的结论有()A.0个 B.1个 C.2个 D.3个5.用配方法解关于的一元二次方程,配方后的方程可以是()A. B.C. D.6.如图,矩形的面积为,反比例函数的图象过点,则的值为()A. B. C. D.7.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,108.我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为()A.4 B.3 C.2 D.19.如图,四边形中,与不平行,分别是的中点,,,则的长不可能是()A.1.5 B.2 C.2.5 D.310.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-二、填空题(每小题3分,共24分)11.若关于x的方程=m无解,则m的值为_____.12.计算:(−)2=________;=_________.13.在△ABC,∠BAC90,ABAC4,O是BC的中点,D是腰AB上一动点,把△DOB沿OD折叠得到△DOB',当∠ADB'45时,BD的长度为_____.14.若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程有整数解,则满足条件的整数a的值之和为_____.15.当________时,方程无解.16.已知为分式方程,有增根,则_____.17.如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.18.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.三、解答题(共66分)19.(10分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.20.(6分)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节日,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习智慧学校开展了一次全校性的:“汉字听写”比赛,每位参赛学生听写个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数绘制成了以下不完整的统计图.根据图表信息解答下列问题:(1)本次共随机抽取了名学生进行调查,听写正确的汉字个数在范围内的人数最多,补全频数分布直方图;(2)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;听写正确的汉字个数组中值21.(6分)把下列各式因式分解:(1)a3﹣4a2+4a(2)a2(x﹣y)+b2(y﹣x)22.(8分)如图,在平面直角坐标系中,为坐标原点,矩形的顶点、,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求线段的长度;(2)求直线所对应的函数表达式;(3)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.23.(8分)当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.24.(8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?25.(10分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码1.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.26.(10分)已知一次函数的图象过点(3,5)与点(-4,-9).(1)求这个一次函数的解析式.(2)若点在这个函数的图象上,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【详解】解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为20,∴(3x)2+(4x)2=202,解得:x=4,∴矩形的两邻边长分别为:12,16;∴矩形的面积为:12×16=1.故选B.2、A【解析】
由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案【详解】∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选A.【点睛】此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE3、D【解析】
直接根据方差的意义求解.【详解】∵S12=20.8,S22=15.3,S32=17,S42=9.6,∴S42<S22<S32<S12,则四个班期末成绩最稳定的是(4)班,故选D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、B【解析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,故选B.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.5、A【解析】
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.【详解】解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,配方得(x−1)2=1.故选:A.【点睛】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6、B【解析】
由于点A是反比例函数上一点,矩形ABOC的面积,再结合图象经过第二象限,则k的值可求出.【详解】由题意得:,又双曲线位于第二象限,则,
所以B选项是正确的.【点睛】本题主要考查反比例函数y=kx中k几何意义,这里体现了数形结合的数形,关键在于理解k的几何意义.7、B【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8、D【解析】
设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y),∵大正方形面积为9,小正方形面积为5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故选:D.【点睛】本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.9、D【解析】
连接BD,取BD的中点G,连接MG、NG,根据三角形的中位线平行于第三边并且等于第三边的一半可得AB=2MG,DC=2NG,再根据三角形的任意两边之和大于第三边得出MN<(AB+DC),即可得出结果.【详解】解:如图,连接BD,取BD的中点G,连接MG、NG,∵点M,N分别是AD、BC的中点,∴MG是△ABD的中位线,NG是△BCD的中位线,∴AB=2MG,DC=2NG,∴AB+DC=2(MG+NG),由三角形的三边关系,MG+NG>MN,∴AB+DC>2MN,∴MN<(AB+DC),∴MN<3;故选:D.【点睛】本题考查了三角形的中位线定理,三角形的三边关系;根据不等关系考虑作辅助线,构造成以MN为一边的三角形是解题的关键.10、B【解析】
根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.二、填空题(每小题3分,共24分)11、或.【解析】
分式方程无解的两种情况是:1.分式方程去分母化为整式方程,整式方程无解;2.整式方程的解使分式方程分母为零.据此分析即可.【详解】解:方程两边同时乘以(2x﹣3),得:x+4m=m(2x﹣3),整理得:(2m﹣1)x=7m①当2m﹣1=0时,整式方程无解,m=②当2m﹣1≠0时,x=,x=时,原分式方程无解;即,解得m=故答案为:或.【点睛】本题考查了分式方程的解,解决本题的关键是明确分式方程无解的条件几种情况,然后再分类讨论.12、5π-1【解析】
根据二次根式的性质计算即可.【详解】解:.故答案为:5,π-1.【点睛】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.13、.【解析】
由勾股定理可得,由折叠的性质和平行线的性质可得,即可求的长.【详解】如图,,,,,是的中点,,把沿折叠得到,,,,,,,,.故答案为.【点睛】本题考查了翻折变换,直角三角形的性质,熟练运用折叠的性质是本题的关键.14、1【解析】
根据题意得到关于的不等式组,解之得到的取值范围,解分式方程根据“该方程有整数解,且”,得到的取值范围,结合为整数,取所有符合题意的整数,即可得到答案.【详解】解:函数的图象经过第一,三,四象限,解得:,方程两边同时乘以得:,去括号得:,移项得:,合并同类项得:,系数化为1得:,该方程有整数解,且,是2的整数倍,且,即是2的整数倍,且,,整数为:2,6,,故答案为1.【点睛】本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.15、1【解析】
根据分式方程无解,得到1−x=0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.【详解】解:分式方程去分母得:m=2(1−x)+1,由分式方程无解,得到1−x=0,即x=1,代入整式方程得:m=1.故答案为:1.【点睛】此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.16、【解析】
去分母得,根据有增根即可求出k的值.【详解】去分母得,,当时,为增根,故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.17、1【解析】
过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.【详解】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A,B在函数的图象上,∴S△AOC=S△BOD=,∵点A、B的横坐标分别为m、3m,∴A(m,),B(3m,),∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,故答案为1.【点睛】本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.18、【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.【点睛】本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.三、解答题(共66分)19、(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解析】
(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.【点睛】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.20、(1)50;;补全频数分布直方图见解析;(2)23【解析】
(1)根据一组的人数是10,所占的百分比是20%,即可求出总人数;根据扇形统计图中每个扇形的圆心角的大小解判断哪个范围的人数最多;根据百分比的意义即可求得一组的人数,进而求得组的人数,从而补全直方图;(2)利用加权平均数公式即可求解.【详解】(1)抽取的学生人数是10÷20%=50(人);听写正确的汉字个数范围内的人数最多;一组的人数是:50×30%=15(人)一组的人数是:50﹣5﹣15﹣10=20(人)补全频数分布直方图如下:(2)(个)答:被调查学生听写正确的汉字个数的平均数是23个.【点睛】本题为考查统计的综合题,考点涉及扇形统计图、样本估计总体、频数(率)分布直方图、加权平均数等知识点,难度不大,熟练掌握统计的相关知识点是解答本题的关键.21、(1)a(a﹣2)2;(2)(x﹣y)(a+b)(a﹣b).【解析】
(1)原式提取公因式后,利用完全平方公式分解即可;
(2)原式提取公因式后,利用平方差公式分解即可.【详解】(1)a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2;(2)a2(x﹣y)+b2(y﹣x)=(x﹣y)(a2﹣b2)=(x﹣y)(a+b)(a﹣b).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22、(1)15;(2);(3)【解析】
(1)根据勾股定理即可解决问题;(2)设AD=x,则OD=OA=AD=12-x,根据轴对称的性质,DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在Rt△OED中,根据OE2+DE2=OD2,构建方程即可解决问题;(3)过点E作EP∥BD交BC于点P,过点P作PQ∥DE交BD于点Q,则四边形DEPQ是平行四边形,再过点E作EF⊥OD于点F,想办法求出最小PE的解析式即可解决问题.【详解】解:(1)由题知:.(2)设,则,根据轴对称的性质,,,又,∴,在中,,即,解得,∴,∴点,设直线所对应的函数表达式为:,则,解得,∴直线所对应的函数表达式为:,(3)存在,过点作EP∥DB交于点,过点作PQ∥ED交于点,则四边形是平行四边形.再过点作于点,由,得,即点的纵坐标为,又点在直线:上,∴,解得,∴由于EP∥DB,所以可设直线:,∵在直线上∴,解得,∴直线:,令,则,解得,∴.【点睛】本题考查一次函数综合题、矩形的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握待定系数法,学会构建一次函数解决问题,属于中考压轴题.23、(1)1,2;(2)y=x﹣1;(3)△MBC的面积=.【解析】
(1)把m=2和3分别代入m+n=mn,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【详解】(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(5,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:,即∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x﹣1;(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,∴,解得:,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年市场战略与竞争优势试题及答案
- 计算机二级VB考试模拟题目及答案
- 学习信访条例心得体会模版
- 2025年法学概论考试备考小贴士试题及答案
- 养老金市场潜力2025年:个人养老金制度对金融市场机遇分析报告
- 钻具租赁协议书
- 针对性行政法学复习与试题
- 补贴转让协议书
- 衡阳分户协议书
- 贵溪离婚协议书
- 预防接种培训考核试题
- 封条模板A4直接打印版
- 《探访龙江剧》-完整版PPT
- GB∕T 31030-2014 机场旅客摆渡车
- 阀门系数Cv和KV值计算表格(带公式)
- 压缩空气系统验证方案
- 中暑预防与应急处理
- 病原学检测阴性肺结核诊断流程T∕CHATA 008-2020
- 尾矿库基础知识最全PPT资料课件
- dgt801系列数字式发电机变压器组保护装置调试大纲
- 300B电子管技术参数
评论
0/150
提交评论