




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小升初复习第20练找次品小升初数学高频常考易错题真题专项汇编一.选择题(共8小题)1.有10盒饼干,其中9盒质量相同,另有1盒少了几块,如果能用天平称,至少次可以保证找出这盒饼干。A.4 B.3 C.2 D.12.有10个外观一样的零件,其中9个零件的质量相等,另一个轻一些,用天平称,确保找出这个零件至少要称A.1次 B.2次 C.3次 D.4次3.有9瓶水,其中8瓶质量相同,另有1瓶是盐水,比其他的水略重一些,利用天平至少称次能保证找出这瓶盐水.A.4 B.3 C.24.有15瓶药,其中有1瓶次品,质量略轻些.用无砝码的天平至少称次,一定能找出这瓶药.A.1 B.2 C.3 D.45.一名工人生产了9个零件,其中有一个是次品(次品轻一些)。用天平称,至少称次保证能找出这个次品。A.2 B.3 C.4 D.56.要在11个外观完全一样的白球中找出1个质量稍轻的次品,比较合适的分法是A.个,2个,7个) B.个,3个,5个) C.个,4个,3个) D.个,5个,1个)7.用天平找次品(其中只有1个质量不足的次品),如果保证4次就可以找到次品,那么待测物品最多有个.A.27 B.28 C.81 D.828.在35个精密零件中,混进了一个不合格零件(不合格零件略轻些),用天平秤至少称次,就一定能找到这个不合格的零件.A.6 B.5 C.4二.填空题(共8小题)9.李老师把14个大小相同的羽毛球放在一起,其中混进了一个次品,次品比正品轻,至少用天平称次,就能保证把次品找出来。10.5个零件里有1个是次品(次品重一些)。用天平称,至少称次就能找出次品来。11.在9颗螺丝钉中,混入了1颗不合格的螺丝钉(次品),它与合格螺丝钉的外形一模一样,只是质量略重一些。如果用天平称,最少称次能保证找出这个次品。12.质检员要用尽可能少的次数找出次品(轻一些),表中有3种物品,请将剩余两种待测物品进行分组,并用最少的次数找出次品。待测物品个数首次分成至少称几次6,2,281513.19个零件中有一个较轻的次品,用天平称,至少次可找出这个次品。14.有20袋糖果,其中有一袋是次品(轻一些)。如果用天平称,至少称次能保证把次品找出来。15.一次偶然的机会,阿凡提从他的朋友那里得到了8枚一模一样的金币,但是其中有1枚是假的,重量较轻,于是阿凡提找来一架天平,想用它找出那枚假的金币。他至少需要用天平称次,才能保证找出那枚假的金币。16.在9瓶合格钙片中,混入了一瓶不合格的钙片(少了几片)。如果用天平称,最少称次能保证找出这瓶不合格钙片。三.判断题(共4小题)17.从5件物品中找一件次品,至少要用天平称2次才能找出来..18.一批零件里100件正品,4件次品,正品率为。19.有14瓶口香糖,其中13瓶质量相同,另有1瓶质量不足,如果用天平称,至少称2次才能保证找出这瓶口香糖。20.有7瓶钙片,其中有一瓶少了5片,用天平至少称2次能保证把它找出来。四.应用题21.有7个粽子,其中6个质量相同,另1个包了一枚硬币,重一些。至少称几次才能保证找到这个粽子?(用你喜欢的方法表示称重过程)22.有10个同样的乒乓球,其中有一个次品较轻。用天平称一称,至少称几次就一定能找出这个次品?23.一箱药品有15盒,其中14盒的质量相同,有一盒的质量不足轻一点,如果用天平称,至少称几次能保证找出那盒质量不足的?24.我国是世界上最早发现茶树和利用茶树的国家,中国是茶的故乡,中国是世界茶叶的祖国。某茶厂进行质量抽检。在抽检的15盒茶叶中,其中的14盒质量相同,另有1盒质量较重一些,如果用天平称,至少称几次能保证将这盒质量较重的茶叶找出来?25.袋子里一共有17个球,其中16个球的质量相同,另外1个球的质量重一些。如果用天平称,那么至少称几次才能保证找出这个球?26.有12袋食盐,其中11袋的质量相同,另有1袋重一些,用天平称,至少称几次才能保证找出这袋重的食盐?27.有61盒维生素,其中1盒稍微轻一些,如果用天平称,至少称多少次就能保证找出这盒稍微轻一些的维生素?(请用合适的方式简要表示出你的思考过程)28.有12盒糖果,其中11盒质量相同,另一盒少了几颗.如果用天平称,至少几次就可以保证找出这盒糖果?请写出过程.29.有15盒饼干,其中的14盒质量相同,另有1盒少了几块,如果能用天平称,至少几次保证可以找出这盒饼干?30.有7个外观一样的硬币,其中有一个假币比真币要重些.用天平称的办法去找,至少几次确保能把假硬币找出来?请写出过程.
参考答案一.选择题(共8小题)1.【分析】将10盒饼干分成两组,天平每边各放一组,称第一次即可找到少几块的盒在哪组;再把少几块的一组分成,2,三组,天平每边放2盒,称第两次,此时出现两种情况:平衡:少几块的盒就是未称的一盒(这样称2次即可找到有少几块的这盒);不平衡:少几块的那盒在轻的一边,再把少几块的2盒分成,称第三次,天平每边放一组,轻的那边就是少几块的那盒。【解答】解:称第一次:把10盒分成两组,天平每边各放一组,少几块的那盒在轻的一边。称第二次:把少几块的那组5盒分成,2,三组,天平每边放2盒。平衡:少几块的那盒就是未称的一盒;不平衡:少几块的那盒在轻的一边。称第三次:把少几块的一组2盒分成,天平每边各放1盒,少几块的那盒在轻的一边。因此,即至少称3次可以保证找出这盒饼干。故选:。【点评】用天平找次品的关键是把被测物品合理分组,分组不同,会导致称的次数不同。2.【分析】将10个零件分成5、5两组,放在天平上称量,再将较轻的那5个分成2、2、1三组称量,进而再将较轻的那2个称量一次就可以找出这个质量轻的零件.【解答】解:第一次:两边各放5个,则可以找出较轻的那5个,第二次:两边各放2个,天平平衡,则剩下的那个是质量轻的零件,天平不平衡,就可以找出较轻的那2个,第三次:两边各放1个,即可找出质量轻的零件;这样只需3次即可确保找出质量轻的零件.故选:.【点评】解答此题的关键是将10个零件进行合理的分组,逐次称量,进而找出次品.3.【分析】将9瓶水分成3份:3,3,3;第一次称重,在天平两边各放3瓶水,手里留3瓶水;(1)如果天平平衡,则盐水在手里的3瓶水中,然后将这3瓶水中的2瓶水在天平两边各放1瓶水,手里留1瓶水,如果天平不平衡,则找到盐水在下降的天平托盘中;如果天平平衡,则盐水在手中。(2)如果天平不平衡,则盐水在下降的天平托盘的3瓶水中,将这3瓶水中的2瓶水在天平两边各放1瓶水,手里留1瓶水,如果天平不平衡,则找到盐水在下降的天平托盘中;如果天平平衡,则盐水在手中。故至少称2次能保证找到这瓶盐水。【解答】解:将9瓶水分成3份:3,3,3;第一次称重,在天平两边各放3瓶水,手里留3瓶水;(1)如果天平平衡,则盐水在手里的3瓶水中,然后将这3瓶水中的2瓶水在天平两边各放1瓶水,手里留1瓶水,如果天平不平衡,则找到盐水在下降的天平托盘中;如果天平平衡,则盐水在手中。(2)如果天平不平衡,则盐水在下降的天平托盘的3瓶水中,将这3瓶水中的2瓶水在天平两边各放1瓶水,手里留1瓶水,如果天平不平衡,则找到盐水在下降的天平托盘中;如果天平平衡,则盐水在手中。故至少称2次能保证找到这瓶盐水。故选:。【点评】考查找次品的问题,分3份操作找到最优方法。4.【分析】把15瓶分成,5,三组,把其中的任意两组放在天平上称,如平衡,则轻的在没称的一组,再把它分成,2,,再把2个一组的放在天平上称,如平衡,则轻的就是没称的,如不平衡,则把轻的一组分放在天平上称可找出轻的.如不平衡,则把轻的一组分成,2,,进行称量,如此下去只需3次可找出轻的。【解答】解:(1)把15瓶药分成,5,三组,把其中的任意两组放在天平上称,如平衡,则轻的在没称的一组,再把它分成,2,,再把2个一组的放在天平上称,如平衡,则轻的就是没称的,如不平衡,则把轻的一组分放在天平上称可找出轻的.(2)如不平衡,则把轻的一组分成,2,,再把2个一组的放在天平上称,如平衡,则轻的就是没称的,如不平衡,则把轻的一组分放在天平上称可找出轻的.答:至少称3次才能保证找出这箱质量轻的。故选:。【点评】解答此题的关键是:利用天平的特点,将这些药进行合理的分组,并逐步进行下去,从而就能找出那瓶质量轻的。5.【分析】第一次:把9个零件平均分成3份,每份3个,把其中的2份分别放在天平的两端,若平衡,则次品在没有秤的1份中,从这一份中得3个中取出2个,各自放在天平的两端,若天平平衡,则次品是为取出的1个,若不平衡,则次品在天平秤轻的一端若天平秤不平衡,则次品在天平秤轻的一端;第二次:从天平秤轻的一端的3个中取出2个,各自放在天平的两端,若天平平衡,则次品是为取出的1个,若不平衡,则次品在天平秤轻的一端,据此解答。【解答】解:第一次:把9个零件平均分成3份,每份3个,把其中的2份分别放在天平的两端,若平衡,则次品在没有秤的1份中,从这一份中得3个中取出2个,各自放在天平的两端,若天平平衡,则次品是为取出的1个,若不平衡,则次品在天平秤轻的一端若天平秤不平衡,则次品在天平秤轻的一端;第二次:从天平秤轻的一端的3个中取出2个,各自放在天平的两端,若天平平衡,则次品是为取出的1个,若不平衡,则次品在天平秤轻的一端。综上所述,用天平称,至少称2次保证能找出这个次品。故选:。【点评】本题主要考查学生依据天平秤平衡原理解决问题的能力,明确每次取得个数是解答本题的关键。6.【分析】第一次:从11个白球重中取出8个,平均分成2份,每份4个,若天平秤平衡,则次品在未取出的3个中,只需要把未取出的3个平均分成3份,把其中的两个各自放在天平的两端,若天平秤平衡,则次品是没有秤的那个,若不平衡,则次品在天平秤轻的一端;假设取出8个,平均分成2份,每份4个,各自放在天平的两端,天平秤不平衡,则次品在天平秤较轻的一端;第二次:把次品的一端的4个平均分成2份,每份2个,次品在天平秤轻的一端;第三次:把次品的一端的2个平均分成2份,每份1个,次品在天平秤轻的一端,据此解答。【解答】解:第一次:从11个白球重中取出8个,平均分成2份,每份4个,若天平秤平衡,则次品在未取出的3个中,只需要把未取出的3个平均分成3份,把其中的两个各自放在天平的两端,若天平秤平衡,则次品是没有秤的那个,若不平衡,则次品在天平秤轻的一端;假设取出8个,平均分成2份,每份4个,各自放在天平的两端,天平秤不平衡,则次品在天平秤较轻的一端;第二次:把次品的一端的4个平均分成2份,每份2个,次品在天平秤轻的一端;第三次:把次品的一端的2个平均分成2份,每份1个,次品在天平秤轻的一端。综上所述,选项分法合适。故选:。【点评】本题主要考查学生依据天平秤平衡原理解决问题的能力,明确每次取得个数是解答本题的关键。7.【分析】根据用天平找次品的规律:需要称量次,待测物品的数量就在个3相乘的积与个3相乘的积之间.即物品最多不能超过个.据此解答.【解答】解:(个答:如果称4次保证找到次品,那么物品的个数不能超过81个.故选:.【点评】此题是灵活考查利用天平找次品的规律,是需要识记的内容.8.【分析】把35个分成三组,即,12,,把两个12个一组的放在天平上称,可找出有次品的一组里,再把12分成,4,,可找出有次品的一组,再把4个分成,1,,把两个1个一组的放在天平上称,可找出有次品的一组里,再把2个分成,可找出有次品的一组,需4次;依此即可求解.【解答】解:第一种情况:35个分成,12,,天平每边放12个,若不平衡,次品在轻的一边,把12个分成,4,,天平每边放4个,若不平衡,次品在轻的一边,把4个分成,1,,天平每边放1个,若不平衡,次品在轻的一边,把2个分成,天平每边放1个,若不平衡,次品在轻的一边.这样需要4次即可找到次品.第二种情况:若天平平衡,次品在11个的一组.把11分成,4,,天平每边放4个,若不平衡,次品在轻的一边,把4个分成,1,,天平每边放1个,若不平衡,次品在轻的一边,把2个分成,天平每边放1个,若不平衡,次品在轻的一边.这样需要4次即可找到次品.第三种情况:若天平平衡,次品在3个的一组.把3成,1,,一次即可找到次品这样需要3次即可找到次品.因此用天平秤至少称4次,就一定能找到这个不合格的零件.故选:.【点评】解答此题的关键是将零件进行合理的分组,逐次称量,进而找出次品.二.填空题(共8小题)9.【分析】第一次把14个羽毛球分成3份:5个、5个、4个,取5个的两份分别放在天平两侧,若天平平衡,较轻的在未取的一份,若天平不平衡,取较轻的一份继续;第二次,取含有较轻的一份个或4个),分成3份:2个、2个、1个,取2个的分别放在天平的两侧,若天平平衡,则未取的为较轻的次品,若天平不平衡,取较轻的继续;第三次,把含有较轻的一份个)分别放在天平两侧,即可找到较轻的次品。【解答】解:根据分析得,要找出14个羽毛球中那个较轻的次品,至少用天平称3次,就能保证把次品找出来。故答案为:3。【点评】天平秤的平衡原理是解答本题的依据,注意每次取羽毛球的个数。10.【分析】把这5个零件分成3份,2,,取放在天平上称,如平衡则次品在没称量的一份中,如不平衡,则在重的一份中,同理,再把有次品的一份放天平称,据此可找出次品。【解答】解:,2,取放在天平上称,如平衡则次品在没称量的一份中,如不平衡,则在重的一份中,同理,再把有次品的一份放天平称,重上些的次品低,找出次品。根据以上分析知:至少称2次就能找出次品来。故答案为:2。【点评】本题主要考查了学生根据天平平衡的原理,解答问题的能力。11.【分析】把9颗螺丝钉平均分成3份,每份3个,第一次,一边3个,哪边重就在哪边,一样重就是剩余的3个;第二次,一边1个,哪边重就是哪边,一样重就是剩余的那个;进而得出结论。【解答】解:第一次,把9颗螺丝钉平均分成3份,每份3颗,取两份分别放在天平的两侧,若天平平衡,则较重的次品在未取的一份中,若天平不平衡,取较重的一份继续;第二次,取含有较重的一份个),取其中2个分别放在天平两侧,若天平平衡,则次品为未取的一个,若天平不平衡,可找到较重的次品。所以用天平称,最少称2次能保证找出这个次品。故答案为:2。【点评】解答此题的关键是将所给物品进行合理的分组,逐次称量,即可找出次品。12.【分析】次品主要的特征是在重量上不符合标准,偏轻或偏重.找次品方法:一是把待测物品平均分成3份,二是要分的尽量平均,能够均分的平均分成3份,不能均分的,可以使多的一份与少的一份相差1;用天平秤其中相等的2份,若平衡,次品在余下的一份中,若不平衡,次品在稍高或稍低的1份中,这样一次就能排除掉的物品,是最快捷的方法由此解答。【解答】解:待测物品个数首次分成至少称几次6,2,28,3,215,5,3【点评】本题主要考查找次品的方法,关键是根据物品的个数与称量次数之间的关系做题。13.【分析】将19个零件分成7、6、6三组,然后利用天平平衡原理解答即可.【解答】解:第一次:把19个零件分成3份:6个、6个、7个,取6个的两份分别放在天平两侧,若天平平衡,则次品在未取的一份,若天平不平衡,取较轻的一份继续;第二次:取含有较轻的零件个或7个)分成3份:2个、2个、2个(或3个),取2个的两份分别放在天平两侧,若天平平衡,则次品在未取的一份中,若天平不平衡,取较轻的一份继续;第三次;从含有较轻的一份个或3个)中取2个分别放在天平两侧,若天平平衡,则次品为未取的一个,若天平不平衡,较轻的为次品。所以用天平称,至少3次可找出这个次品。故答案为:3。【点评】解答此题的关键是将零件进行合理的分组,逐次称量,进而找出次品.14.【分析】把这20袋糖果分成,7,组,天平每边放放7袋,会出现两种情况:平衡,次品在6袋的一组;不平衡,次品在轻的一组。若次品在6袋的一组,把6袋分成两组,次品在轻的一边,把有次品的一组分成,1,再称一次即可找出次品;若次品在7袋的一组,把7袋分成,3,,天平每边放3袋,会出现两种情况:平衡,次品在1袋组;不平衡,次品在轻的一边,同样,3袋再称一次即可找出次品。【解答】解:把10袋分成,7,三组。称第一次:平每边放放7袋,会出现两种情况:平衡,次品在6袋的一组;不平衡,次品在轻的一组。若次品在6袋的一组,称第二次:若次品在6袋的一组,把6袋分成两组,次品在轻的一边;称第三次:把有次品的一组分成,1,再称一次即可找出次品;若次品在7袋的一组,称第二次,把7袋分成,3,,天平每边放3袋,会出现两种情况:平衡,次品在1袋组;不平衡,次品在轻的一边,同样,3袋再称一次即可找出次品。答:至少称3次能保证把次品找出来。故答案为:3。【点评】用天平找次品(已知次品轻或重),合理分组是关键,分组不同,需要称的称的次数也不同,如本题分成,5,5,或,4,4,4,都需要称4次。15.【分析】根据题意,把8个金币分成3份:3枚、3枚、2枚,第一次取3枚的两份分别放在天平的两侧,若天平平衡,则较轻的在未取的一份,若天平不平衡,取较轻的一份继续称量;第二次,取含有较轻的一份个或2个)中的2个分别放在天平两侧,即可找到较轻的一个。【解答】解:把8个金币分成3份:3枚、3枚、2枚,第一次取3枚的两份分别放在天平的两侧,若天平平衡,则较轻的在未取的一份,若天平不平衡,取较轻的一份继续称量;第二次,取含有较轻的一份个或2个)中的2个分别放在天平两侧,即可找到较轻的一个。答:至少需要用天平称2次才能保证找出假的硬币。故答案为:2。【点评】天平秤的平衡原理是解答本题的依据,注意每次取金币的个数。16.【分析】第一次称重,将9瓶钙片分成,3,份;在天平两边各放3瓶,手里留3瓶;(1)如果天平平衡,则不合格的钙片在手里的3瓶中,然后将这3瓶中的2瓶在天平两边各放1瓶,手里留1瓶,如果天平不平衡,则找到不合格的钙片在上升的天平托盘中;如果天平平衡,则不合格的钙片在手中。(2)如果天平不平衡,则不合格的钙片在上升的天平托盘的3瓶中,将这3瓶中的2瓶在天平两边各放1瓶,手里留1瓶,如果天平不平衡,则找到不合格的钙片在上升的天平托盘中;如果天平平衡,则不合格的钙片在手中。故至少称2次能保证找到这瓶不合格的钙片。【解答】解:第一次称重,将9瓶钙片分成,3,份;在天平两边各放3瓶,手里留3瓶;(1)如果天平平衡,则不合格的钙片在手里的3瓶中,然后将这3瓶中的2瓶在天平两边各放1瓶,手里留1瓶,如果天平不平衡,则找到不合格的钙片在上升的天平托盘中;如果天平平衡,则不合格的钙片在手中。(2)如果天平不平衡,则不合格的钙片在上升的天平托盘的3瓶中,将这3瓶中的2瓶在天平两边各放1瓶,手里留1瓶,如果天平不平衡,则找到不合格的钙片在上升的天平托盘中;如果天平平衡,则不合格的钙片在手中。故至少称2次能保证找到这瓶不合格的钙片。故答案为:2。【点评】本题主要考查学生依据天平秤平衡原理解决问题的能力,明确每次取的瓶数是解答本题的关键。三.判断题(共4小题)17.【分析】因天平是一个等臂杠杆,所以如果左右两盘质量不一样,则天平会不平衡,利用此特点进行分组称量,即可进行选择.【解答】解:根据找次品的方法可知,当个数最多是时,至少用次可以找到次品(知道轻重)。因为:,所以如果知道次品较轻还是较重,2,经过2次一定能保证找到次品,因为题干中没有说次品较轻还是较重,所以无法断定,但不平衡的情况下,哪一组中有次品,应该再多称一次才能断定综上所述,至少经过3次即可找出次品故答案为:.【点评】此题是灵活考查天平的应用,方法还是杠杆的平衡原理.18.【分析】正品率正品数量总数量,由此代入数据判断。【解答】解:故原题说法错误。故答案为:。【点评】此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘。19.【分析】根据“次可以找出3的次幂个零件中一个较轻次品”判断。【解答】解:2次可以找出(个待测物品的一个较轻次品;3次可以找出(个待测物品的一个较轻次品;因此3次可以找出个待测物品中的一个较轻次品;14在范围之内,所以需要3次才能保证找出这瓶口香糖。故答案为:。【点评】运用找次品问题总结的规律是解答本题的捷径。20.【分析】根据找次品的规律,将7瓶钙片分成1瓶、3瓶、3瓶,共三组,天平两边各放3瓶,若天平平衡,则少5片的那瓶是没称的那1瓶;若天平不平衡,从向上翘的那3瓶中取出一瓶,再称另外的两瓶,天平两边各放1瓶,若平衡,则拿出的那瓶是少5片的那瓶,若不平衡,则向上翘的那1瓶是少5片的那瓶,从而问题得解。【解答】解:将7瓶钙片分成1瓶、3瓶、3瓶,共三组,天平两边各放3瓶;若天平平衡,则少5片的那瓶是没称的那1瓶;若天平不平衡,从向上翘的那3瓶中取出一瓶,再称另外的两瓶,天平两边各放1瓶,若平衡,则拿出的那瓶是少5片的那瓶,若不平衡,则向上翘的那1瓶是少5片的那瓶。一共称了2次,所以有7瓶钙片,其中有一瓶少了5片,用天平至少称2次能保证把它找出来是正确的。故答案为:。【点评】解答此题的关键是,对找次品的规律的运用,将7瓶钙片进行合理的分组,从而只用2次就可以将次品药找出来。四.应用题21.【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。【解答】解:依据分析可得:第一步:把7个中分成3、3、1,称量3、3两组,若天平平衡,则剩下的那1个是重的;第二步:如果天平不平衡,则天平较低的那端一定有稍重的那个,再把这3个分成1,1,1,称量1,1两组,如果天平不平衡,则天平较低的那端一定是稍重的那个,如果平衡,则剩下的一个就是较重的那个粽子。故至少称2次才能保证找到这个粽子。【点评】解答此题的关键是将所给物品进行合理的分组,逐次称量,即可找出次品。22.【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。【解答】解:经分析得:将10个同样的乒乓球分成3份:3,3,4;第一次称重,在天平两边各放3个,手里留4个。(1)如果天平平衡,则次品在手里,将手里的4个分为2份:2,2,在天平两边各放2个,次品在上升的天平托盘中。接下来,将这2个分别放在天平的两边就可以鉴别出次品。(2)如果天平不平衡,则次品在上升的天平托盘的3个中,从这3个中取出2个,在天平两边各放1个,若平衡,则没称的那个是次品;若不平衡,则上升的那个是次品。故至少称3次能保证找出次品。答:至少称3次能保证找出次品。【点评】考查找次品的问题,分3份操作找到最优方法。23.【分析】天平是一个等臂杠杆,所以如果左右两边的质量不一样,则天平会不平衡,利用此特点把15盒药品分成5盒、5盒、5盒三份,先称其中的两份,若平衡,则次品在剩余的一份中,若不平衡,则次品在天平的较高一端;进而继续将较高端分成2盒、2盒、1盒,利用上面方法继续比较,直至找出质量不足的那一盒药品。【解答】解:把15这盒分成5盒,5盒,5盒三份。第一次:任取两份,分别放在天平秤两端,若天平秤平衡,则较轻一盒,即在未取的5盒中(再按照下面方法即可找出),若不平衡,取天平秤较高端的一份继续;第二次:把在天平秤较高端5盒,任取4盒,平均分成两份,每份2盒,分别放在天平秤两端,若天平秤平衡,则未取那盒即为质量不足的,若天平秤不平衡,取天平秤较高端的一份继续;第三次:把天平秤较高端的两盒,分别放在天平秤两端,较高端的那盒即为质量不足的。答:至少称3次能保证找出那盒质量不足的。【点评】解答此题的关键是将所给物品进行合理的分组,逐次称量,即可找出次品。24.【分析】根据“次可以找出3的次幂个零件中一个较轻次品”做题。【解答】解:2次可以找出(个待测物品的一个较重次品;3次可以找出(个待测物品的一个较重次品;因此3次可以找出个待测物品中的一个较重次品;15盒茶叶中的一盒较重,至少称3才可以保证找出这盒茶叶。答:用天平称,至少称3次能保证将这盒质量较重的茶叶找出来。【点评】运用找次品问题总结的规律是解答本题的捷径。25.【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。【解答】解:(1)把17个球分成,6,三组,把其中的两组6个的放在天平上称,如平衡,则重的在没称的一组,再把它分成,2,,再把2个一组的放在天平上称,一边2个,如平衡,则重的就是没称的,如不平衡,则把重的一组分放在天平上称可找出重的。(2)如不平衡,则把重的一组分成,2,,再把2个一组的放在天平上称,如平衡,则重的就在剩下2个没称的里,把重的一组分放在天平上称可找出重的;如不平衡,则把重的一组分放在天平上称可找出重的。所以如果用天平称,那么至少称3次才能保证找出这个球。故答案为:3。【点评】解答此题的关键是将所给物品进行合理的分组,逐次称量,即可找出次品。26.【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。【解答】解:经分析得:将12袋分成3份:4,4,4;第一次称重,在天平两边各放4袋,手里留4袋;(1)如果天平平衡,则次品在手里,将这4袋中的2袋在天平两边各放1袋,手里留2袋;如果天平不平衡,则找到次品在下沉的天平托盘中;如果天平平衡,则次品在手中的2袋中,接下来,将这两袋分别放在天平的两边就可以找出次品。(2)如果天平不平衡,则次品在下沉的天平托盘的4袋中,将这4袋中的2袋在天平两边各放1袋,手里留2袋,如果天平不平衡,则找到次品在下沉的天平托盘中;如果天平平衡,则次品在手中的2袋中,接下来,将这两袋分别放在天平的两边就可以找出次品。故用天平称,至少称3次才能保证找出这袋重的食盐。【点评】解答此题的关键是将所给物品进行合理的分组,逐次称量,即可找出次品。27.【分析】要达到次数最少,需要将要识别的物品的数目尽可能均匀的分成三份,然后每次称重时,需要将数目相等的两份放到天平两边称重,不断识别,一直到找到次品为止。据此答题即可。【解答】解:1、把61盒维生素先分3份:20、20、21,比较两份20的重量,如果两边相等,则次品在21里;否则在20的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 材料力学与智能材料性能应用拓展重点基础知识点
- 材料疲劳断裂预测研究进展重点基础知识点
- 行政法理论的基本原理试题及答案
- 半地下仓库火灾应急预案(3篇)
- 跨文化管理与经济政策试题及答案
- 消防火灾应急预案预演(3篇)
- 计算机程序开发中的风险评估试题及答案
- 资源分配不公的经济原因探讨试题及答案
- 客房火灾报警应急预案(3篇)
- 2025年法学概论考试的法律思维模式与试题及答案
- 降本增效理念在建筑中的应用试题及答案
- 提高安全意识共建平安校园
- 2025年高考作文备考之热点时事素材资料
- 2025安徽蚌埠市龙子湖区产业发展有限公司招聘22人笔试参考题库附带答案详解
- 华为笔试题目大全及答案
- 产业研究报告-中国水环境监测行业发展现状、市场规模及投资前景分析(智研咨询)
- 偿二代下我国财险公司偿付能力影响因素的深度剖析与实证研究
- 清代文学教案
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- JGT266-2011 泡沫混凝土标准规范
- 德州信息技术中考备考样题4综合
评论
0/150
提交评论