




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省黔西南州望谟六中学数学八下期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图在平面直角坐标系中若菱形的顶点的坐标分别为,点在轴上,则点的坐标是()A. B. C. D.2.下列平面图形中,不是轴对称图形的是()A. B. C. D.3.如图,将点P(-2,3)向右平移n个单位后落在直线y=2x-1上的点P'处,则n等于()A.4 B.5 C.6 D.74.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(,0) B.(2,0) C.(,0) D.(3,0)5.函数自变量x的取值范围是()A.x≥1且x≠3 B.x≥1 C.x≠3 D.x>1且x≠36.矩形ABCD的对角线AC、BD交于点O,下列结论不成立的是()A.AC=BD B.OA=OB C.OC=CD D.∠BCD=90°7.无论a取何值,关于x的函数y=﹣x+a2+1的图象都不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.实数的值在()A.0和1之间 B.1和1.5之间C.1.5和2之间 D.2和4之间9.一次函数y=x-1的图像向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知点,、,是直线上的两点,下列判断中正确的是()A. B. C.当时, D.当时,11.一鞋店试销一种新款女鞋,试销期间卖出情况如表:型号
220
225
230
235
240
245
250
数量(双)
3
5
10
15
8
3
2
对于这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数 B.众数 C.中位数 D.方差12.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图,△ACB和△DCE都是等腰直角三角形,CA=CB,CD=CE,∠ACB=∠DCE=90°,△ACB的顶点A在△DCE的斜边DE上,且AD=,AE=3,则AC=_____.14.化简:______.15.如图是小明统计同学的年龄后绘制的频数直方图,该班学生的平均年龄是__________岁.16.如图,小明从点出发,前进5后向右转20°,再前进5后又向右转20°,这样一直走下去,直到他第一次回到出发点为止,他所走的路径构成了一个多边形(1)小明一共走了________米;(2)这个多边形的内角和是_________度.17.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.18.一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处.折断处离地面的高度是______尺.三、解答题(共78分)19.(8分)如图,菱形对角线交于点,,,与交于点.(1)试判断四边形的形状,并说明你的理由;(2)若,求的长.20.(8分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D.过点D作DE⊥AB于点E.求证:△ACD≌△AED.22.(10分)如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,(1)填空:BD=______;(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.23.(10分)如图,在中,分别是边上的点,连接,且.求证:;如果是的中点,,求的长,24.(10分)如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.25.(12分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.26.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨吨及以下超过17吨但不超过30吨的部分超过30吨的部分说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?
参考答案一、选择题(每题4分,共48分)1、B【解析】
首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【详解】∵菱形ABCD的顶点A、B的坐标分别为(-6,0)、(4,0),点D在y轴上,
∴AB=AO+OB=6+4=10,
∴AD=AB=CD=10,
∴,
∴点C的坐标是:(10,8).
故选:B.【点睛】本题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.2、A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.3、A【解析】
由平移的性质得出P'的坐标,把P'点坐标代入直线y=2x-1上即可求出n的值;【详解】由题意得P'(-2+n,3),则3=2(-2+n)-1,解得n=4.故答案为A.【点睛】本题主要考查了一次函数的图象,平移的性质,掌握一次函数的图象,平移的性质是解题的关键.4、C【解析】
过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【详解】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:C.【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.5、A【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.考点:函数自变量的取值范围,二次根式和分式有意义的条件.6、C【解析】
根据矩形的性质可以直接判断.【详解】∵四边形ABCD是矩形∴AC=BD,OA=OB=OC=OD,∠BCD=90°∴选项A,B,D成立,故选C.【点睛】本题考查了矩形的性质,熟练运用矩形的性质是本题的关键.7、C【解析】
根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函数y=﹣x+a2+1经过第一、二、四象限,不经过第三象限,故选:C.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.8、B【解析】
根据,,即可判断.【详解】解:∵,,,∴实数的值在1和1.5之间,故选:B.【点睛】此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.9、D【解析】试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D.考点:一次函数图象与几何变换.10、D【解析】
根据一次函数图象的增减性,结合一次函数图象上点的横坐标的大小关系,即可得到答案.【详解】解:一次函数上的点随的增大而减小,又点,、,是直线上的两点,若,则,故选:.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.11、B【解析】
众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【详解】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选B.12、C【解析】∠C=90°,AC=3,BC=4,,所以AB=5.故选C.二、填空题(每题4分,共24分)13、【解析】
由等腰三角形的性质可得AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°,可证△ADC≌△BEC,可得AD=BE=,∠D=∠BEC=45°,由勾股定理可求AB=2,即可求AC的长。【详解】证明:如图,连接BE,
∵△ACB和△DCE都是等腰直角三角形
∴AC=BC,DC=EC,∠DCE=∠ACB=90°,∠D=∠CED=45°
∴∠DCA=∠BCE,且AC=BC,DC=EC,
∴△ADC≌△BEC(SAS)
∴AD=BE=,∠D=∠BEC=45°,
∴∠AEB=90°
∴AB==2
∵AB=BC
∴BC=,因为△ACB是等腰直角三角形,所以BC=AC=.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质,解题的关键是掌握等腰直角三角形的性质、全等三角形的判定和性质.14、【解析】
根据二次根式的性质化简即可.【详解】.故答案为.【点睛】本题考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.15、【解析】
利用总年龄除以总人数即可得解.【详解】解:由题意可得该班学生的平均年龄为.故答案为:14.4.【点睛】本题主要考查频数直方图,解此题的关键在于准确理解频数直方图中所表达的信息.16、902880【解析】
先根据题意判断该多边形的形状,再计算该多边形的边的总长和内角和即可.【详解】解:由题意知,该多边形为正多边形,∵多边形的外角和恒为360°,360÷20=18,∴该正多边形为正18边形.(1)小明一共走了:5×18=90(米);故答案为90(2)这个多边形的内角和为:(18-2)×180°=2880°故答案为2880【点睛】本题考查了正多边形的相关知识,掌握多边形的内角和定理是解决本题的关键.17、75【解析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案为75.18、【解析】
设折断处离地面的高度是x尺,根据勾股定理即可列出方程进行求解.【详解】设折断处离地面的高度是x尺,根据勾股定理得x2+32=(10-x)2,解得x=故折断处离地面的高度是尺.【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.三、解答题(共78分)19、(1)四边形是矩形,理由见解析;(2).【解析】
(1)由菱形的性质可证明∠BOA=90°,然后再证明四边形AEBO为平行四边形,从而可证明四边形AEBO是矩形;(2)依据矩形的性质可得到OE=AB,然后依据菱形的性质可得到AB=CD,即可求出的长.【详解】解:(1)四边形是矩形理由如下:∵,,∴四边形是平行四边形又∵菱形对角线交于点,∴,即∴四边形是矩形(2)∵四边形是矩形,∴在菱形中,∴.【点睛】本题主要考查的是菱形的性质判定、矩形的性质和判定,求出四边形是矩形是解题的关键.20、(1)D(1,0)(2)y=x-6(3)可求得点C(2,-3),则S△ADC=【解析】
解:(1)因为是:与轴的交点,所以当时,,所以点;(2)因为在直线上,设的解析式为,所以直线的函数表达式;(3)由,所以点的坐标为,所以的底高为的纵坐标的绝对值为,所以;【点睛】此题考查一次函数解析式的求法,一次函数与坐标轴交点的求.和二元一次方程组的解法,两条直线交点的求法,即把两个一次函数对应的解析式构成二元一次方程组,求出方程组的解就是两条直线的交点坐标,也考查了三角形面积的求法;21、见解析.【解析】
首先根据AD平分∠CAB,,可得CD=DE,即可证明△ACD≌△AED.【详解】证明:AD平分∠CABCD=DE△ACD≌△AED(AAS).【点睛】本题主要考查三角形的全等证明,是基本知识,应当熟练掌握.22、(1)BD=2(2)(3)120°30°【解析】.分析:(1)根据勾股定理计算即可;(2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;(3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.详解:(1)BD==2;(2)如图1所示:当AP与PE在一条线上时,PE+PC最小,∵AB=,BE=t,∴PE+PC的最小值为,(3)分两种情况考虑:①当点E在BC的延长线上时,如图2所示,△PCE是等腰三角形,则CP=CE,∴∠CPE=∠CEP,∴∠BCP=∠CPE+∠CEP=2∠CEP,∵在正方形ABCD中,∠ABC=90°,∴∠PBA=∠PBC=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴∠BAP=∠BCP=2∠CEP,∵∠BAP+∠PEC=90°,∴2∠PEC+∠PEC=90°,∴∠PEC=30°;②当点E在BC上时,如图3所示,△PCE是等腰三角形,则PE=CE,∴∠CPE=∠PCE,∴∠BEP=∠CPE+∠PCE=2∠ECP,∵四边形ABCD是正方形,∴∠PBA=∠PBC=45°,又AB=BC,BP=BP,∴△ABP≌△CBP,∴∠BAP=∠BCP,∵∠BAP+∠AEB=90°,∴2∠BCP+∠BCP=90°,∴∠BCP=30°,∴∠AEB=60°,∴∠PEC=180°-∠AEB=120°.点睛:本题考查了正方形的性质,勾股定理,全等三角形的判定与性质,两点之间线段最短及分类讨论的数学思想,运用勾股定理是解(1)的关键,确定点P的位置是解(2)的关键,分两种情况讨论是解(3)的关键.23、见解析;【解析】
(1)根据两角对应相等两个三角形相似即可得证.(2)根据点E是AC的中点,设AE=x,根据相似三角形的性质可知,从而列出方程解出x的值.【详解】证明:.由知点是的中点,设,解得(不和题意舍去).【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.24、见解析【解析】
由ASA证明△AOE≌△COF,得出对应边相等EO=FO,证出四边形AFCE为平行四边形,再由FE⊥AC,即可得出结论.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据库的安全性与管理策略试题及答案
- 托儿所火灾应急预案范文(3篇)
- 软件设计师考试核心试题及答案解析
- 计算机软件考试常见错误分析
- 行政管理社会服务试题及答案总结
- 便捷复习的试题及答案高效利用
- 企业财务健康状况与战略制定的关系试题及答案
- 高考数学难题攻略与答案
- 法学概论的重要概念归纳与试题及答案
- 2025年网络安全架构与运营考察试题及答案
- 聚酯装置生产操作工:高级聚酯装置生产操作工
- 氟硅酸钠安全技术说明书MSDS
- 2023年乒乓球二级裁判考试题库(含答案)
- 《如何处理人际关系》课件
- 成立危急重症抢救小组通知1
- 国际恐怖主义形势与趋势分析
- 人工智能在人力资源招聘中的应用
- 国家中小学智慧教育平台培训专题讲座
- 文艺晚会人员分工完整
- 关于运营工作计划模板汇编
- 安全生产知识与管理能力考核合格证申请表(安全生产管理人员)
评论
0/150
提交评论