




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省洛阳市涧西区东方二中学八年级数学第二学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.化简的结果是()A. B. C.1 D.2.某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/℃﹣20﹣100102030声速/m/s318324330336342348下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.4.下列计算错误的是()A.+= B.×= C.÷=3 D.(2)2=85.如图,菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+KQ的最小值为()A. B. C.2 D.6.如图,在边长为的正方形中,点为对角线上一动点,于于,则的最小值为()A. B. C. D.7.下列命题中,不正确的是().A.一个四边形如果既是矩形又是菱形,那么它一定是正方形B.有一个角是直角,且有一组邻边相等的平行四边形是正方形C.有一组邻边相等的矩形是正方形D.两条对角线垂直且相等的四边形是正方形8.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形 B.当AC⊥BD时,四边形ABCD是菱形C.当AC=BD时,四边形ABCD是矩形 D.当∠ABC=90°时,四边形ABCD是正方形9.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.10.若一个直角三角形的两边长为12、13,则第三边长为()A.5 B.17 C.5或17 D.5或313二、填空题(每小题3分,共24分)11.把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为______.12.已知一次函数,那么__________13.点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1___________y2(选填“>”<”=”)14.某公司招聘考试分笔试和面试两项,其中笔试按,面试按计算加权平均数作为总成绩.马丁笔试成绩85分,面试成绩90分,那么马丁的总成绩是______分.15.如果一个直角三角形的两边分别是6,8,那么斜边上的中线是___________.16.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为___17.如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为___________.18.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.三、解答题(共66分)19.(10分)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cosA=.(1)求线段CD的长;(2)求sin∠DBE的值.20.(6分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连结CM,若CM=1,则FG的长为.(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为.21.(6分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台价格,月处理污水量极消耗费如下表:经预算,该企业购买设备的资金不高于105万元.⑴请你为企业设计几种购买方案.⑵若企业每月产生污水2040吨,为了节约资金,应选那种方案?22.(8分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.23.(8分)(1)计算:﹣|-2|﹣(2﹣π)0+(﹣1)2017(2)先化简,再求值:2(a+)(a﹣)﹣a(a﹣)+6,其中a=﹣124.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.(10分)计算:(1)(-)2-+(2)-×.26.(10分)如图,点O是等边△ABC内一点,∠AOB=105°,∠BOC等于α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形.(2)求∠OAD的度数.(3)探究:当α为多少度时,△AOD是等腰三角形?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据二次根式的性质可得=∣∣,然后去绝对值符号即可.【详解】解:=∣∣=,故选:B.【点睛】本题主要考查二次根式的化简,解此题的关键在于熟记二次根式的性质.2、C【解析】
根据自变量、因变量的含义,以及声音在空气中传播的速度与空气温度关系逐一判断即可.【详解】∵在这个变化中,自变量是温度,因变量是声速,∴选项A正确;
∵根据数据表,可得温度越高,声速越快,∴选项B正确;
∵342×5=1710(m),∴当空气温度为20℃时,声音5s可以传播1710m,∴选项C错误;
∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),∴当温度每升高10℃,声速增加6m/s,∴选项D正确.故选C.【点睛】此题主要考查了自变量、因变量的含义和判断,要熟练掌握.3、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4、A【解析】
根据二次根式的运算法则逐一进行计算即可.【详解】,二次根式不能相加,故A计算错误,符合题意,,B计算正确,不符合题意,,C计算正确,不符合题意,,D计算正确,不符合题意,故选A.【点睛】本题考查二次根式的运算,熟知二次根式的运算法则是解题关键.5、A【解析】
先根据四边形ABCD是菱形可知,AD//BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P'',连接P'Q,PC,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,再在Rt△BCP'中利用锐角三角函数的定义求出P'C的长即可。【详解】解:∵四边形ABCD是菱形,∴AD//BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P关于直线BD的对称点P',连接P'Q,P'C,则P'Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP'⊥AB时PK+QK的值最小,在Rt△BCP'中,∵BC=AB=2,∠B=60°,∴故选:A.【点睛】本题考查的是轴对称一最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6、B【解析】
由正方形的性质得BC=CD=4,∠C=90°,∠CBD=∠CDB=45°,再证出四边形四边形MECF是矩形,得出CE=MF=DF,即当点M为BD的中点时EF的值最小.【详解】在边长为4cm的正方形ABCD中,BC=CD=4∠C=90°,∠CBD=∠CDB=45°于于F∠MEC=∠MFC=∠MFD=90°四边形MECF是矩形,△MDF为等腰三角形CE=MF=DF设DF=x,则CE=xCF=CD-DF=4-x在RT△CEF中,由勾股定理得==,当且仅当x-2=0时,即x=2时,有最小值0当且仅当x-2=0时,即x=2时,有最小值故选B。【点睛】本题考查正方形的性质,找好点M的位置是解题关键.7、D【解析】试题分析:根据正方形的判定定理可得选项A正确;有一个角是直角的平行四边形是矩形,有一组邻边相等的矩形是正方形,选项B正确;有一组邻边相等的矩形是正方形,选项C正确;两条对角线垂直平方且相等的四边形是正方形,选项D错误,故答案选D.考点:正方形的判定.8、D【解析】
根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.【详解】解:∵四边形ABCD是平行四边形,则A、当AB=BC时,四边形ABCD是菱形,正确;B、当AC⊥BD时,四边形ABCD是菱形,正确;C、当AC=BD时,四边形ABCD是矩形,正确;D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;故选:D.【点睛】本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.9、D【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.10、D【解析】
根据告诉的两边长,利用勾股定理求出第三边即可.注意13,12可能是两条直角边也可能是一斜边和一直角边,所以得分两种情况讨论.【详解】当12,13为两条直角边时,第三边=122+13当13,12分别是斜边和一直角边时,第三边=132-12故选D.【点睛】本题考查了勾股定理的知识,题目中渗透着分类讨论的数学思想.二、填空题(每小题3分,共24分)11、y=-2x+1【解析】分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y-y0=k(x-x0)求得解析式即可.详解:∵直线AB是直线y=-2x平移后得到的,∴直线AB的k是-2(直线平移后,其斜率不变)∴设直线AB的方程为y-y0=-2(x-x0)
①把点(m,n)代入①并整理,得y=-2x+(2m+n)
②∵2m+n=1
③把③代入②,解得y=-2x+1即直线AB的解析式为y=-2x+1.点睛:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.12、—1【解析】
将x=−2代入计算即可.【详解】当x=−2时,f(−2)=3×(−2)+2=−1.故答案为:−1.【点睛】本题主要考查的是求函数值,将x的值代入解析式解题的关键.13、>.【解析】
函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.【详解】y=-2x+b中k<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为>.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.14、1【解析】
根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】小明的总成绩为85×60%+90×40%=1(分).故答案为:1.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.15、4或5【解析】【分析】分两种情况分析:8可能是直角边也可能是斜边;根据直角三角形斜边上的中线等于斜边的一半.【详解】当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=×10=5,当8是斜边时,斜边上的中线是4,故答案为:4或5【点睛】本题考核知识点:直角三角形斜边上的中线.解题关键点:分两种情况分析出斜边.16、【解析】
设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,【详解】∵DE是线段AB的垂直平分线,∴AE=BE=BC+CE=3+x,∴在Rt△ACE中,AE2=AC2+CE2,即(3+x)2=42+x2,解得x=.17、【解析】
连接BF,由等边三角形的性质可得三角形全等的条件,从而可证△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂线段最短可知当DF⊥BF时,DF值最小,利用含30°的直角三角形的性质定理可求DF的值.【详解】解:如图,连接BF∵△ABC为等边三角形,AD⊥BC,AB=6,
∴BC=AC=AB=6,BD=DC=3,∠BAC=∠ACB=60°,∠CAE=30°
∵△CEF为等边三角形
∴CF=CE,∠FCE=60°
∴∠FCE=∠ACB
∴∠BCF=∠ACE
∴在△BCF和△ACE中
BC=AC,∠BCF=∠ACE,CF=CE
∴△BCF≌△ACE(SAS)
∴∠CBF=∠CAE=30°,AE=BF
∴当DF⊥BF时,DF值最小
此时∠BFD=90°,∠CBF=30°,BD=3
∴DF=BD=
故答案为:.【点睛】本题考查了构造全等三角形来求线段最小值,同时也考查了30°所对直角边等于斜边的一半及垂线段最短等几何知识点,具有较强的综合性.18、4【解析】
根据对角线互相垂直的四边形的面积等于对角线乘积的一半.【详解】解:如图,∵AC平分∠BAD,∴∠BAE=∠DAE,在△BAE和△DAE中AB=AD,∴△BAE≌△DAE,∴∠BEA=∠DEA,∵∠BEA+∠DEA=180º,∴∠BEA=∠DEA=90º,∴DB⊥AC,∴S四边形ABCD=12AC×∵AC=8,S四边形ABCD=16,∴BD=4.故答案为:4.【点睛】本题考查了对角线互相垂直的四边形的面积.三、解答题(共66分)19、(1)CD=;(2).【解析】
(1)根据直角三角形斜边上的中线等于斜边的一半,求出AB的长,即可求出CD的长;(2)由于D为AB上的中点,求出AD=BD=CD=,设DE=x,EB=y,利用勾股定理即可求出x的值,据此解答即可.【详解】解:(1)∵在Rt△ABC中,AC=15,cosA=,∴AB=25.∵△ACB为直角三角形,D是边AB的中点,∴CD=.(2)在Rt△ABC中,.又AD=BD=CD=,设DE=x,EB=y,则在Rt△BDE中,①,在Rt△BCE中,②,联立①②,解得x=.∴.20、(1)证明见解析;(1)1,2.【解析】【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;(1)利用直角三角形的斜边的中线是斜边的一半,应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.【详解】感知:∵四边形ABCD是正方形,∴AB=BC,∠BCE=∠ABC=20°,∴∠ABE+∠CBE=20°,∵AF⊥BE,∴∠ABE+∠BAF=20°,∴∠BAF=∠CBE,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);探究:(1)如图②,过点G作GP⊥BC于P,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=20°,∴四边形ABPG是矩形,∴PG=AB,∴PG=BC,同感知的方法得,∠PGF=∠CBE,在△PGF和△CBE中,,∴△PGF≌△CBE(ASA),∴BE=FG;(1)由(1)知,FG=BE,连接CM,∵∠BCE=20°,点M是BE的中点,∴BE=1CM=1,∴FG=1,故答案为:1.应用:同探究(1)得,BE=1ME=1CM=6,∴ME=3,同探究(1)得,CG=BE=6,∵BE⊥CG,∴S四边形CEGM=CG×ME=×6×3=2,故答案为:2.【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.21、(1)有三种购买方案:方案一:不买A型,买B型10台,方案二,买A型1台,B型9台,方案三,买A型2台,B型8台;(2)为了节约资金应购买A型1台,B型9台,即方案二.【解析】
(1)设购买污水处理设备A型x台,则B型(10-x)台,列出不等式求解即可,x的值取正整数;
(2)根据企业每月产生的污水量为2040吨,列出不等式求解,再根据x的值选出最佳方案.【详解】解:(1)设购买污水处理设备A型x台,则B型(10-x)台,根据题意得
,解得0≤x≤,
∵x为整数,
∴x可取0,1,2,
当x=0时,10-x=10,
当x=1,时10-x=9,
当x=2,时10-x=8,
即有三种购买方案:
方案一:不买A型,买B型10台,
方案二,买A型1台,B型9台,
方案三,买A型2台,B型8台;
(2)由240x+200(10-x)≥2040
解得x≥1
由(1)得1≤x≤
故x=1或x=2
当x=1时,购买资金12×1+10×9=102(万元)
当x=2时,购买资金12×2+10×8=104(万元)
∵104>102
∴为了节约资金应购买A型1台,B型9台,即方案二.【点睛】本题考查不等式组在现实生活中的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出不等式关系式是解题关键.22、(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.23、(1)﹣1;(2)原式=a2+a=5﹣3.【解析】
(1)根据二次根式的性质、绝对值的性质、零指数幂的性质及乘方的定义分别计算各项后,再合并即可;(2)先把代数式2(a+)(a﹣)﹣a(a﹣)+6化为最简,再代入求值即可.【详解】(1)原式=3﹣2﹣×1-1=﹣﹣1=﹣1;(2)原式=2a2﹣6﹣a2+a+6=a2+a当a=﹣1时,原式=(﹣1)2+(﹣1)=5﹣3.【点睛】本题题考查了实数及二次根式的运算,熟练掌握运算法则是解本题的关键.24、(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年经济政策与行业风险分析试题及答案
- 网络管理员考试各类型训练试题及答案
- 软件系统测试核心概念解析试题及答案
- 计算机科学理论与实践结合试题及答案
- VB编程理论试题及答案
- 提升营收的多元化策略计划
- 吉林省松原市名校2025届数学七下期末监测模拟试题含解析
- 择业思考与决策计划
- 2025软考网络管理员提高试题及答案
- 仓库货物损耗控制措施计划
- 企业周年庆蛋糕定制协议
- 苹果行业竞争对手分析分析
- 林业创业计划书
- 量子计算芯片技术
- 电子元件考题及参考答案
- 国家开放大学(中央电大)报名登记表(附填写说明)
- 中间产品储存期验证方案
- AQ1029-2019 煤矿安全监控系统及检测仪器使用管理规范-2
- 加速寿命计算公式(可靠性)
- 2023年遂宁市船山区五年级数学第二学期期末学业质量监测试题含解析
- 汽车吊安全管理规定
评论
0/150
提交评论