




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
郴州市重点中学2025届八年级数学第二学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若甲、乙两人同时从某地出发,沿着同一个方向行走到同一个目的地,其中甲一半的路程以a(km/h)的速度行走,另一半的路程以b(km/h)的速度行走;乙一半的时间以a(km/h)的速度行走,另一半的时间以b(km/h)的速度行走(a≠b),则先到达目的地的是()A.甲 B.乙C.同时到达 D.无法确定2.当a<0,b<0时,-a+2-b可变形为()A. B.- C. D.3.若代数式在实数范围内有意义,则实数的取值范围是()A. B. C. D.4.如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是()A.①②③ B.①② C.①③ D.②③5.下列式子从左到右的变形中,属于因式分解的是()A.102-5=5(2-1) B.(+y)=+C.2-4+4=(-4)+4 D.2-16+3=(-4)(+4)+36.四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是()A. B. C. D.7.下列根式中与是同类二次根式的是()A. B. C. D.8.甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是()A.甲队率先到达终点 B.甲队比乙队多走了200米路程C.乙队比甲队少用0.2分钟 D.比赛中两队从出发到2.2分钟时间段,乙队的速度比甲队的速度快9.如图,点O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=8,OM=3,则线段OB的长为()A.5 B.6 C.8 D.1010.下列各式成立的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.12.已知,是关于的方程的两根,且满足,那么的值为________.13.已知:如图,、分别是的中线和角平分线,,,则的长等于__.14.定义运算“*”为:a*b,若3*m=-,则m=______.15.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,若AB=6,则OE=_____.16.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。17.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.18.某县为了节约用水,自建了一座污水净化站,今年一月份净化污水3万吨,三月份增加到3.63万吨,则这两个月净化的污水量每月平均增长的百分率为______.三、解答题(共66分)19.(10分)如图①,正方形的边长为,动点从点出发,在正方形的边上沿运动,设运动的时间为,点移动的路程为,与的函数图象如图②,请回答下列问题:(1)点在上运动的时间为,在上运动的速度为(2)设的面积为,求当点在上运动时,与之间的函数解析式;(3)①下列图表示的面积与时间之间的函数图象是.②当时,的面积为20.(6分)甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:甲校成绩统计表成绩7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于_______(2)求图②中,“8分”的人数,并请你将该统计图补充完整。(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?21.(6分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)画出,并写出点D、E、F的坐标..(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.22.(8分)某中学为了解该校学生的体育锻炼情况,随机抽查了该校部分学生一周的体育锻炼时间的情况,并绘制了如下两幅不完整的统计图:根据以上信息解答以下问题:(1)本次抽查的学生共有多少名,并补全条形统计图;(2)写出被抽查学生的体育锻炼时间的众数和中位数;(3)该校一共有1800名学生,请估计该校学生一周体育锻炼时间不低于9小时的人数.23.(8分)如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<1≤10)s.过点E作EF⊥BC于点F,连接DE,DE.(1)用含t的式子填空:BE=________
cm,CD=________
cm.(2)试说明,无论t为何值,四边形ADEF都是平行四边形;(3)当t为何值时,△DEF为直角三角形?请说明理由.24.(8分)若b2﹣4ac≥0,计算:25.(10分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.(1)求证:∠ADG=∠DCF;(2)联结HO,试证明HO平分∠CHG.26.(10分)已知与成正比例,且当时,,则当时,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
设从A地到B地的路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,根据题意,分别表示出甲、乙所用时间的代数式,然后再作比较即可。【详解】解:设从到达目的地路程为S,甲走完全程所用时间为t甲,乙走完全程所用时间为t乙,由题意得,而对于乙:解得:因为当a≠b时,(a+b)2>4ab,所以<1所以t甲>t乙,即甲先到达,故答案为B.【点睛】本题考查了根据实际问题列代数式,列代数式首先要弄清语句中各种数量的意义及其相互关系,本题解题的关键是表示出甲乙所用时间,并选择适当的方法比较出二者的大小.2、C【解析】试题解析:∵a<1,b<1,
∴-a>1,-b>1.
∴-a+2-b=()2+2+()2,
=()2.
故选C.3、B【解析】
直接利用分式有意义的条件进而得出答案.【详解】∵代数式在实数范围内有意义,∴a-1≠0,∴a≠1.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.4、A【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.【详解】解:①∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG.故正确;②∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形.故正确;③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ.故正确.综上所述,正确的结论是①②③.故选A.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.5、A【解析】
因式分解是将一个多项式转化成几个代数式乘积的形式,据此定义进行选择即可.【详解】A.符合定义且运算正确,所以是因式分解,符合题意;B.是单项式乘多项式的运算,不是因式分解,不符合题意;C.因为,所以C不符合题意;D.不符合定义,不是转换成几个代数式乘积的形式,不符合题意;综上所以答案选A.【点睛】本题考查的是因式分解的定义,熟知因式分解是将式子转化成几个代数式乘积的形式是解题的关键.6、C【解析】
根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.【详解】解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;故选:C.【点睛】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.7、C【解析】
各项化简后,利用同类二次根式定义判断即可.【详解】解:、,不符合题意;、,不符合题意;、,与的被开方数相同;与是同类二次根式是符合题意;、,不符合题意,故选:.【点睛】此题考查了同类二次根式,熟练掌握同类二次根式定义是解本题的关键.8、C【解析】
A、由函数图象可知,甲走完全程需要4分钟,乙走完全程需要3.8分钟,乙队率先到达终点,错误;B、由函数图象可知,甲、乙两队都走了1000米,路程相同,错误;C、因为4﹣3.8=02分钟,所以,乙队比甲队少用0.2分钟,正确;D、根据0~2.2分钟的时间段图象可知,甲队的速度比乙队的速度快,错误;故选C.【点睛】本题考查函数的图象,能正确识图,根据函数图象所给的信息,逐一判断是关键.9、A【解析】
已知OM是△ADC的中位线,再结合已知条件则DC的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO的长即可求出.【详解】解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴AD=6,∵CD=AB=8,∴AC==10,∴BO=AC=1.故选A.【点睛】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC的长.10、D【解析】
直接利用二次根式的性质分别化简得出答案.【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,正确.
故选:D.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.二、填空题(每小题3分,共24分)11、B【解析】
根据二次根式有意义的条件即可解答.【详解】由题意得,1﹣x≥0,解得,x≤1.故选B.【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解决问题的关键.12、或【解析】
根据根与系数的关系求出+与·的值,然后代入即可求出m的值.【详解】∵,是关于的方程的两根,∴+=2m-2,·=m2-2m,代入,得m2-2m+2(2m-2)=-1,∴m2+2m-3=0,解之得m=或.故答案为:或.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.13、【解析】
过D点作DF∥BE,则DF=BE=1,F为EC中点,在Rt△ADF中求出AF的长度,根据已知条件易知G为AD中点,因此E为AF中点,则AC=AF.【详解】过点作,是的中线,,为中点,,,则,,是的角平分线,,,为中点,为中点,,.故答案为:.【点睛】本题考查了三角形中线、三角形中位线定理和角平分线的性质以及勾股定理的应用,作出辅助线构建直角三角形是解题的关键.14、—2【解析】
试题分析:根据定义运算“*”:a*b,即可得方程,在解方程即可得到结果.解:由题意得,解得.考点:新定义运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.15、3【解析】
根据平行四边形的对角线互相平分可得OA=OC,然后判断出OE是三角形的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OE=AB.【详解】解:在▱ABCD中,OA=OC,∵点E是BC的中点,∴OE是三角形的中位线,∴OE=AB=3故答案为3【点睛】本题考查了平行四边形的性质和三角形中位线定理,平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.16、1【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.17、30【解析】
解:先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=3018、10%【解析】
本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两个月净化的污水量平均每月增长的百分率为x,那么由题意可得出方程为3(1+x)2=3.63解方程即可求解.【详解】解:设这两个月净化的污水量平均每月增长的百分率为x,由题意得3(1+x)2=3.63
解得x=0.1或-2.1(不合题意,舍去)
所以这两个月净化的污水量平均每月增长的百分率为10%.【点睛】本题主要考查了增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.三、解答题(共66分)19、(1)6,2;(2);(3)①C;②4或1.【解析】
(1)由图象得:点P在AB上运动的时间为6s,在CD上运动的速度为6÷(15-12)=2(cm/s);(2)当点P在CD上运动时,由题意得:PC=2(t-12),得出PD=30-2t,由三角形面积公式即可得出答案;(3)①当点P在AB上运动时,y与t之间的函数解析式为y=3t;当点P在BC上运动时,y与t之间的函数解析式为y=18;当点P在CD上运动时,y与t之间的函数解析式为y=-6t+90,即可得出答案;②由题意分两种情况,即可得出结果.【详解】(1)由题意得:点在上运动的时间为,在上运动的速度为;故答案为:6,2;(2)当点在上运动时,由题意得:,,的面积为,即与之间的函数解析式为;(3)①当点在上运动时,与之间的函数解析式为;当点在上运动时,与之间的函数解析式为;当点在上运动时,与之间的函数解析式为,表示的面积与时间之间的函数图象是,故答案为:;②由题意得:当时,;当时,;即当或时,的面积为;故答案为:4或1.【点睛】本题是四边形综合题目,考查了正方形的性质、函数与图象、三角形面积公式、分类讨论等知识;本题综合性强,熟练掌握正方形的性质和函数与图象是解题的关键.20、(1)144°;(2)3人,补图见解析;(3)8.3分,7分,乙校;(4)甲校.【解析】分析:(1)利用360°减去其它各组对应的圆心角即可求解;(2)首先求得乙校参赛的人数,即可求得成绩是8分的人数,从而将条形统计图补充完整;(3)首先求得得分是9分的人数,然后根据平均数公式和中位数的定义求解;(4)只要比较每个学校前8名的成绩即可.详解:(1)“7分”所在扇形的圆心角等于360°-90°-72°-54°=144°;(2)乙校参赛的总人数是:4÷=20(人),则成绩是8分的人数是:20-8-4-5=3(人).;(3)甲校中得分是9分的人数是:20-11-8=1(人).则甲校的平均分是:=8.3(分),甲校的中位数是:7分;两校的平均数相同,但乙校的中位数大于甲校的中位数,说明乙校的成绩高于甲校的成绩.(4)甲得分是10分的正好有8人,而乙班得分是10分的有5人,不足8人,则应选择甲校.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)【解析】
(1)根据平面直角坐标系中点的坐标的平移规律求解可得;(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.【详解】解:(1)如图,△DEF即为所求,点D的坐标是,即(0,4);点E的坐标是,即(2,2);点F的坐标为,即(3,5);(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).【点睛】本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.22、(1)40,图形见解析;(2)众数是8,中位数是8.5;(3)900名【解析】
(1)本次抽查的学生数=每天锻炼10小时的人数÷每天锻炼10小时的人数占抽查学生的百分比;一周体育锻炼时间为9小时的人数=抽查的人数-(每天锻炼7小时的人数+每天锻炼8小时的人数+每天锻炼10小时的人数);根据求得的数据补充条形统计图即可;(2)一组数据中出现次数最多的数是众数,结合条形图,8出现了18次,所以确定众数就是18;把一组数据按从小到大的数序排列,处于中间位置的一个数字(或两个数字的平均值)叫做这组数据的中位数。由图可知第20、21个数分别是8、9,所以中位数是它们的平均数;(3)该校学生一周体育锻炼时间不低于9小时的估计人数
=该校学生总数×一周体育锻炼时间不低于9小时的频率.【详解】(1)解:本次抽查的学生共有8÷20%=40(名)一周体育锻炼时间为9小时的人数是40-(2+18+8)=12(名)条形图补充如下:(2)解:由条形图可知,8出现了18次,此时最多,所以众数是8将40个数据按从小到大的顺序排列,第20、21个数分别是8、9,所以中位数是(8+9)÷2=8.5(3)解:1800×=900(名)答:估计该校学生一周体育锻炼时间不低于9小时的大约有900名.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意得到本次抽查的学生的总人数.23、(1)(1)t,10-t;(2)见解析;(3)满足条件的t的值为5s或s,理由见解析【解析】
(1)点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,由路程=时间×速度,得AD=t,CD=10-t,;点E从点B出发沿BA方向以
cm/s的速度向点A匀速运动,所以BE=t;(2)因为△ABC是等腰直角三角形,得∠B=45°,结合BE=t,得EF=t,
又因为∠EFB和∠C都是直角相等,
得AD∥EF,
根据一组对边平行且相等的四边形是平行四边形,证得四边形ADFE是平行四边形;(3)
①当∠DEF=90°时,因为DF平分对角,四边形EFCD是正方形,
这时AD=DE=CD
=5,求得t=5;②当∠EDF=90°时,
由DF∥AE,两直线平行,内错角相等,得∠AED=∠EDF=90°,结合∠A=45°,AD=
AE,据此列式求得t值即可;③当∠EFD=90°,点D、E、F在一条直线上,△DFE不存在.【详解】(1)由题意可得BE=tcm,CD=AC-AD=(10-t)cm,故填:t,10-t;(2)解:如图2中∵CA=CB,∠C=90°∴∠A=∠B=45°,∵EF⊥BC,∴∠EFB=90°∴∠FEB=∠B=45°∴EF=BF∵BE=t,∴EF=BF=t∴AD=EF∵∠EFB=∠C=90°∴AD∥EF,∴四边形ADFE是平行四边形(3)解:①如图3-1中,当∠DEF=90°时,四边形EFCD是正方形,此时AD=DE=CD,∴t=10-t,∴t=5②如图3-2中,当∠EDF=90°时,∵DF∥AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店火灾应急预案论文(3篇)
- 2025年软件设计师综合测评试题及答案
- 获取高分2025年软考试题及答案
- 法学概论的课程改革与试题及答案的适应
- 2025年软件设计师考试回顾与总结试题及答案
- 企业变革中的风险应对考题及答案
- VB考试技能训练试题及答案
- 2025【项目工程管理合作协议】合同范本
- 2025年软件设计师考试前瞻试题及答案
- 生产工作汇报
- GB∕T 12719-2021 矿区水文地质工程地质勘查规范
- 法商小课堂传承保险法商课婚姻保险法商课32张幻灯片
- 《品牌策划与管理(第4版)》知识点与关键词解释
- 《刘姥姥进大观园》课本剧剧本3篇
- 房屋买卖合同解除协议书
- 司法局PPT模板
- 干部选拔任用工作全部系列表格12张
- 五年级奥数《盈亏问题》(课堂PPT)
- 建设工程质量安全管理奖罚制度汇编
- 小学语文四年级上册作业设计《21.古诗三首》(附答案)部编版
- FC西游记后传金手指
评论
0/150
提交评论