




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市青阳片2025届八年级数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知,则有()A. B. C. D.2.一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟3.不等式组的解集在数轴上表示正确的是A. B. C. D.4.若正比例函数y=(1﹣m)x中y随x的增大而增大,那么m的取值范围()A.m>0 B.m<0 C.m>1 D.m<15.已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.76.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段ACAB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5 D.67.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是()A. B. C. D.8.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元 B.6.8元 C.7.5元 D.8.6元9.如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A. B. C. D.10.用配方法解一元二次方程,配方后得到的方程是()A. B. C. D.11.如图,在中,,,点为上一点,,于点,点为的中点,连接,则的长为()A.5 B.4 C.3 D.212.下列方程中有实数根的是()A.; B.=; C.; D.=1+.二、填空题(每题4分,共24分)13.已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.14.一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.15.如图,Rt△ABC中,∠C=90°,AC=BC,∠BAC的平分线AD交BC于点D,分别过点A作AE∥BC,过点B作BE∥AD,AE与BE相交于点E.若CD=2,则四边形ADBE的面积是_____.16.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C′的坐标是_____.17.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。18.观察下列各式:32=4+5,52=12+13,72=24+25,92=40+41…根据发现的规律得到132=____+____.三、解答题(共78分)19.(8分)定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点为坐标原点,以点为圆心,5为半径作圆,交轴的负半轴于点,求过点的圆的切线的解析式;(2)若抛物线()与直线()相切于点,求直线的解析式;(3)若函数的图象与直线相切,且当时,的最小值为,求的值.20.(8分)关于的方程有两个不相等的实数根.求实数的取值范围;是否存在实数,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出的值;若不存在,说明理由.21.(8分)如图,△ABC中,AB=10,BC=6,AC=8.(1)求证:△ABC是直角三角形;(2)若D是AC的中点,求BD的长.(结果保留根号)22.(10分)(1)解不等式组:.(2)解方程:.23.(10分)先化简:(﹣1)÷,再0,1,2,﹣1中选择一个恰当的x值代入求值.24.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表x单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?25.(12分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为(直接写出答案).26.如图,在矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG.(1)如图1,若在旋转过程中,点E落在对角线AC上,AF,EF分别交DC于点M,N.①求证:MA=MC;②求MN的长;(2)如图2,在旋转过程中,若直线AE经过线段BG的中点P,连接BE,GE,求△BEG的面积
参考答案一、选择题(每题4分,共48分)1、A【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.【详解】m=(-)×(-2),=,
=×3=2=,
∵,
∴5<<6,
即5<m<6,
故选A.【点睛】本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<<6,题目比较好,难度不大.2、C【解析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.3、C【解析】试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此,不等式组的解集﹣2≤x<1在数轴上表示为C.故选C.4、D【解析】
先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】解:∵正比例函数y=(1﹣m)x中,y随x的增大而增大,∴1﹣m>0,解得m<1.故选D.【点睛】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.5、B【解析】试题分析:根据二次根式的运算法则进行运算即可.试题解析:.故应选B考点:1.二次根式的混合运算;2.求代数式的值.6、B【解析】
过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.【详解】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴,即EF=1.故选B.考点:轴对称-最短路线问题.7、B【解析】根据题意,在实验中有3个阶段,①、铁块在液面以下,液面得高度不变;②、铁块的一部分露出液面,但未完全露出时,液面高度降低;③、铁块在液面以上,完全露出时,液面高度又维持不变;分析可得,B符合描述;故选B.8、B【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】售价应定为:≈6.8(元);故选B.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.9、A【解析】
解:根据题意,需得出x与y的关系式,也就是PB与CQ的关系,∵AB=AC=2,∠BAC=20°∴△ABC是等腰三角形,∠ABC=∠ACB,又∵三角形内角和是180°∴∠ABC=(180°-∠BAC)÷2=80°∵三角形的外角等于与其不相邻的两个内角之和∴∠PAB+∠P=∠ABC即∠P+∠PAB=80°,又∵∠BAC=20°,∠PAQ=100°,∴∠PAB+∠QAC=80°,∴∠P=∠QAC,同理可证∠PAB=∠Q,∴△PAB∽△AQC,∴,代入得得出,y与x的关系式,由此可知,这是一个反比例函数,只有选项A的图像是反比例函数的图像.故选:A【点睛】本题考查三角形的外角性质,等腰三角形的性质,相似三角形的判定与性质,反比例函数图像.难度系数较高,需要学生综合掌握三角形的原理,相似三角形的判定,以及基本函数图像综合运用.10、B【解析】
先把常数移到等号右边,然后根据配方法,计算即可.【详解】解:,,,,故选:B.【点睛】本题主要考查一元二次方程的配方法,注意等式两边同时加上一次项系数一半的平方是解题的关键.11、D【解析】
利用三角形的中位线定理即可求答,先证明出E点为CD的中点,F点为AC的中点,证出EF为AC的中位线.【详解】因为BD=BC,BE⊥CD,
所以DE=CE,
又因为F为AC的中点,
所以EF为ΔACD的中位线,
因为AB=10,BC=BD=6,
所以AD=10-6=4,
所以EF=×4=2,故选D【点睛】本题考查三角形的中位线等于第三边的一半,学生们要熟练掌握即可求出答案.12、B【解析】【分析】根据算术平方根意义或非负数性质以及分式方程的意义,可以判断方程的根的情况.【详解】A.,算术平方根不能是负数,故无实数根;B.=,两边平方可化为二元一次方程,有实数根,故可以选;C.方程化为,平方和不能是负数,故不能选;D.由=1+得x=1,使分母为0,故方程无实数根.故选:B【点睛】本题考核知识点:方程的根.解题关键点:根据方程的特殊形式判断方程的根的情况.二、填空题(每题4分,共24分)13、或【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.【点睛】本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.14、1.1,2,2.1.【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.详解:1,3,1,1,2,a的众数是a,∴a=1或2或3或1,将数据从小到大排列分别为:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位数分别为:1.1,2,2.1.故答案为:1.1,2,2.1.点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.15、【解析】
过D作DF⊥AB于F,根据角平分线的性质得出DF=CD=2.由△ABC是等腰直角三角形得出∠ABC=45°,再证明△BDF是等腰直角三角形,求出BD=DF=2,BC=2+2=AC.易证四边形ADBE是平行四边形,得出AE=BD=2,然后根据平行四边形ADBE的面积=BDAC,代入数值计算即可求解.【详解】解:如图,过D作DF⊥AB于F,∵AD平分∠BAC,∠C=90°,∴DF=CD=2.∵Rt△ABC中,∠C=90°,AC=BC,∴∠ABC=45°,∴△BDF是等腰直角三角形,∵BF=DF=2,BD=DF=2,∴BC=CD+BD=2+2,AC=BC=2+2.∵AE//BC,BE⊥AD,∴四边形ADBE是平行四边形,∴AE=BD=2,∴平行四边形ADBE的面积=.故答案为.【点睛】本题考查了平行四边形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质,平行四边形的面积.求出BD的长是解题的关键.16、(3,1)【解析】
关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.17、x<【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18、841【解析】
认真观察三个数之间的关系可得出规律:,由此规律即可解答问题.【详解】解:由已知等式可知,,∴故答案为:84、1.【点睛】本题考查了数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能由特殊得出一般规律.三、解答题(共78分)19、(1);(2);(3)1或【解析】
(1)连接,由、可求,即.因为过点的切线,故有,再加公共角,可证,由对应边成比例可求的长,进而得点坐标,即可求直线解析式.(2)分别把点代入抛物线和直线解析式,求得抛物线解析式为,直线解析式可消去得.由于直线与抛物线相切(只有一个交点),故联立解析式得到关于的方程有两个相等的实数根,即△,即求得的值.(3)因为二次函数图象与直线相切,所以把二次函数和直线解析式联立,得到关于的方程有两个相等是实数根,即△,整理得式子,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线.分类讨论对称轴在左侧、中间、右侧三种情况,画出图形得:①当对称轴在左侧即时,由图象可知时随的增大而增大,所以时取得最小值,把、代入得到关于的方程,方程无解;②当对称轴在范围内时,时即取得最小值,得方程,解得:;③当对称轴在2的右侧即时,由图象可知时随的增大而减小,所以时取得最小值,把、代入即求得的值.【详解】解:(1)如图1,连接,记过点的切线交轴于点,,,设直线解析式为:,解得:过点的的切线的解析式为;(2)抛物线经过点,解得:抛物线解析式:直线经过点,可得:直线解析式为:直线与抛物线相切关于的方程有两个相等的实数根方程整理得:△解得:直线解析式为;(3)函数的图象与直线相切关于的方程有两个相等的实数根方程整理得:△整理得:,可看作关于的二次函数,对应抛物线开口向上,对称轴为直线当时,的最小值为①如图2,当时,在时随的增大而增大时,取得最小值,方程无解;②如图3,当时,时,取得最小值,解得:;③如图4,当时,在时随的增大而减小时,取得最小值,解得:,(舍去)综上所述,的值为1或.【点睛】本题考查了圆的切线的性质,相似三角形的判定和性质,一元二次方程的解法及根与系数的关系,二次函数的图象与性质.第(3)题的解题关键是根据相切列得方程并得到含、的等式,转化为关于的二次函数,再根据画图讨论抛物线对称轴情况进行解题.20、(1)且;(2)不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】
由于方程有两个不相等的实数根,所以它的判别式,由此可以得到关于的不等式,解不等式即可求出的取值范围.首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于的等式,解出值,然后判断值是否在中的取值范围内.【详解】解:依题意得,,又,的取值范围是且;解:不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程的两根分别为,,由根与系数的关系有:,又因为方程的两个实数根之和等于两实数根之积的算术平方根,,,由知,,且,不符合题意,因此不存在符合条件的实数,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。21、(1)见解析;(2)2.【解析】分析:(1)直接根据勾股定理逆定理判断即可;(2)先由D是AC的中点求出CD的长,然后利用勾股定理求BD的长即可.详解:(1)∵AB2=100,BC2=36,AC2=64,∴AB2=BC2+AC2,∴△ABC是直角三角形.(2)CD=4,在Rt△BCD中,BD=.点睛:本题考查了勾股定理及其逆定理的应用,勾股定理是:直角三角形两条直角边的平方和等于斜边的平方;勾股定理逆定理是:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.22、(1);(2).【解析】
(1)先分别求出①②不等式的解集,再确定不等式组的解集.(2)先去分母,然后按照整式方程求解,最后检验即可.【详解】解:(1)由①得:x≤1由②得:∴原不等式组的解集是:;(2)-7x=-7x=1经检验是原方程的根.【点睛】本题考查了解一元一次不等式组和分式方程.解一元一次不等式组的关键在于分别求出各不等式的解集;解分式方程的方法和整式方程类同,只是最后需要有检验环节,这也是易错点.23、-1【解析】分析:先算括号里面的,再因式分解,约分即可得出答案.解:原式=•=﹣(x﹣1)=1﹣x,∵x≠﹣1,1,0,∴x=2,∴原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,掌握分式的约分、通分是解题的关键.24、(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.【详解】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);(2)①设z与a之间的函数关系式为z=ma+n,,得,∴z与a之间的函数关系式为z=-a+90,当z=40时,40=-a+90,得a=50,当x=40时,y=-0.5×40+65=45,40×50-40×45=2000-1800=200(万元),答:该厂第一个月销售这种机器的总利润为200万元;②设每台机器的利润为w万元,W=(-x+90)-(-0.5x+65)=-x+25,∵10≤x≤70,且为整数,∴当x=10时,w取得最大值,答:每个月生产10台这种机器才能使每台机器的利润最大.故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.25、(1)①见解析;②见解析;(2)【解析】
(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
(2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件开发与运维的协同管理方法试题及答案
- 2025软件设计师项目试题及答案
- 2025年科技与文化的交融发展试题及答案
- 专业网络构建与维护的重要性计划
- 前台文员如何处理工作中的挑战计划
- 班级志愿服务活动的组织与实施计划
- 建材行业安保工作计划
- 2025江南酥梨批发合同
- 班级于活动中的自我管理计划
- 通信设备在智能工厂设备维护的远程支持考核试卷
- 2025江苏省安全员A证考试题库附答案
- 2025年测温定氧探头项目可行性研究报告
- 2025年山东省济南市中考一模生物试题(一)(原卷版+解析版)
- 统编版(2024)七年级下册《道德与法治》课本“活动课”参考答案
- 2025年中远海运限公司招聘自考难、易点模拟试卷(共500题附带答案详解)
- T-SUCCA 01-2024 营运车辆停运损失鉴定评估规范
- 教育消费行为研究-深度研究
- T-ZSA 232-2024 特种巡逻机器人通.用技术要求
- 工贸企业安全生产台账资料
- 2025年离婚协议书范本(无争议)
- 第12讲 反比例函数的图象、性质及应用 课件中考数学复习
评论
0/150
提交评论