广东省广州市黄埔区2025届八下数学期末复习检测模拟试题含解析_第1页
广东省广州市黄埔区2025届八下数学期末复习检测模拟试题含解析_第2页
广东省广州市黄埔区2025届八下数学期末复习检测模拟试题含解析_第3页
广东省广州市黄埔区2025届八下数学期末复习检测模拟试题含解析_第4页
广东省广州市黄埔区2025届八下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市黄埔区2025届八下数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是()月份123456用水量/t36456aA.4,5B.4.5,6C.5,6D.5.5,62.如图所示,四边形的对角线和相交于点,下列判断正确的是()A.若,则是平行四边形B.若,则是平行四边形C.若,,则是平行四边形D.若,,则是平行四边形3.已知一次函数,随的增大而减小,则的取值范围是()A. B. C. D.4.下列命题的逆命题不成立的是()A.两直线平行,同旁内角互补 B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分 D.全等三角形的对应边相等5.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)6.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形7.如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC8.如图,已知正方形ABCD的边长为10,E在BC边上运动,取DE的中点G,EG绕点E顺时针旋转90°得EF,问CE长为多少时,A、C、F三点在一条直线上()A. B. C. D.9.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里 B.海里 C.3海里 D.5海里10.下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.12.2019年6月12日,重庆直达香港高铁的车票正式开售据悉,重庆直达香港的这趟G319/320次高铁预计在7月份开行,全程1342公里只需7个半小时该车次沿途停靠站点包括遵义、贵阳东、桂林西、肇庆东、广州南和深圳北重庆直达香港高铁开通将为重庆旅游业发展增添生机与活力,预计重庆旅游经济将创新高在此之前技术部门做了大量测试,在一次测试中一高铁列车从地出发匀速驶向地,到达地停止;同时一普快列车从地出发,匀速驶向地,到达地停止且,两地之间有一地,其中,如图①两列车与地的距离之和(千米)与普快列车行驶时间(小时)之间的关系如图②所示则高铁列车到达地时,普快列车离地的距离为__________千米.13.如图,已知AD是△ABC的中线,,,那么_________;14.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为_____.15.一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.16.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚,若梯子的顶端下滑,则梯足将滑动______.17.已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.18.如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.三、解答题(共66分)19.(10分)(本小题满分12分)直线y=34(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.20.(6分)如图,在四边形ABCD中,AB=AC,BD=DC,BE//DC,请仅用无刻度的直尺按下列要求画图.(1)在图1中,画一个以AB为边的直角三角形;(2)在图2中,画一个菱形.21.(6分)如图,已知,直线y=2x+3与直线y=-2x-1,求ΔABC的面积.22.(8分)按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)23.(8分)在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.24.(8分)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.25.(10分)计算:﹣3+2.26.(10分)关于x的一元二次方程x1xp10有两个实数根x1、x1.(1)求p的取值范围;(1)若,求p的值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t),

∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,

则该户今年1至6月份用水量的中位数为=5.5、众数为6,

故选:D.【点睛】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.2、D【解析】

若AO=OC,BO=OD,则四边形的对角线互相平分,根据平行四边形的判定定理可知,该四边形是平行四边形.【详解】∵AO=OC,BO=OD,∴四边形的对角线互相平分所以D能判定ABCD是平行四边形.故选D.【点睛】此题考查平行四边形的判定,解题关键在于掌握判定定理.3、B【解析】

根据一次函数的图像性质即可求解.【详解】依题意得k-2<0,解得故选B.【点睛】此题主要考查一次函数的性质,解题的关键是熟知k的性质.4、B【解析】

把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;故选B.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.5、B【解析】

根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答【详解】△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),选B。【点睛】此题考查坐标与图形性质,解题关键在于得出x的值6、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.8、C【解析】

过F作BC的垂线,交BC延长线于N点,连接AF.只要证明Rt△FNE∽Rt△ECD,利用相似比2:1解决问题.再证明△CNF是等腰直角三角形即可解决问题.【详解】过F作BC的垂线,交BC延长线于N点,连接AF.

∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,

∴∠DEC=∠EFN,

∴Rt△FNE∽Rt△ECD,

∵DE的中点G,EG绕E顺时针旋转90°得EF,

∴两三角形相似比为1:2,

∴可以得到CE=2NF,NE=CD=5.

∵AC平分正方形直角,

∴∠NFC=45°,

∴△CNF是等腰直角三角形,

∴CN=NF,

∴CE=NE=5=,

故选C.【点睛】本题考查正方形的性质和旋转的性质,解题的关键是掌握正方形的性质和旋转的性质.9、B【解析】

连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【详解】解:如图,连接AC,由题意得,∠CBA=90°,∴AC==(海里),故选B.【点睛】本题考查了勾股定理的应用和方向角问题,熟练掌握勾股定理、正确标注方向角是解题的关键.10、C【解析】

根据立方根的概念即可求出答案.【详解】①2是8的立方根,故①正确;②4是64的立方根,故②错误;③是的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.故选C.【点睛】本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.二、填空题(每小题3分,共24分)11、或1.【解析】

试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,故答案为8+4或1.考点:1.图形的剪拼;2.三角形中位线定理.12、1【解析】

由图象可知4.5小时两列车与C地的距离之和为0,于是高铁列车和普快列车在C站相遇,由于AC=2BC,因此高铁列车的速度是普快列车的2倍,相遇后图象的第一个转折点,说明高铁列车到达B站,此时两车距C站的距离之和为1千米,由于V高铁=2V普快,因此BC距离为1千米的三分之二,即240千米,普快离开C占的距离为1千米的三分之一,即120千米,于是可以得到全程为240+240×2=720千米,当高铁列车到达B站时,普快列车离开B站240+120=1千米,此时距A站的距离为720-1=1千米.【详解】∵图象过(4.5,0)

∴高铁列车和普快列车在C站相遇

∵AC=2BC,

∴V高铁=2V普快,

BC之间的距离为:1×=240千米,全程为AB=240+240×2=720千米,

此时普快离开C站1×=120千米,

当高铁列车到达B站时,普快列车距A站的距离为:720-120-240=1千米,

故答案为:1.【点睛】此题考查一次函数的应用.解题关键是由函数图象得出相关信息,明确图象中各个点坐标的实际意义.联系行程类应用题的数量关系是解决问题的关键,图象与实际相结合容易探求数量之间的关系,也是解决问题的突破口.13、【解析】【分析】根据向量的加法运算法则可求出结果.【详解】因为AD是△ABC的中线,所以BD=DC,即,又因为-==,所以,.故答案为【点睛】本题考核知识点:向量的计算.解题关键点:熟记向量的计算法则.14、1:1【解析】以点A为原点,建立平面直角坐标系,则点B(3,1),C(3,0),D(2,1),如下图所示:设直线AB的解析式为yAB=kx,直线CD的解析式为yCD=ax+b,∵点B在直线AB上,点C、D在直线CD上,∴1=3k,解得:k=,,∴yAB=x,yCD=-x+3,∴点P的坐标为(,),∴S△PBD:S△PAC=.故答案是:1:1.15、五【解析】设多边形边数为n.则360°×1.5=(n−2)⋅180°,解得n=5.故选C.点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.16、【解析】

根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO中,根据勾股定理可得,,如果梯子的顶度端下滑1米,则.在直角三角形中,根据勾股定理得到:,则梯子滑动的距离就是.故答案为:1m.【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键.17、1.【解析】

根据菱形的性质,菱形的面积=对角线乘积的一半.【详解】解:菱形的面积是:.故答案为1.【点睛】本题考核知识点:菱形面积.解题关键点:记住根据对角线求菱形面积的公式.18、-3【解析】

首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.【详解】过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,设PN=x,PM=y,由已知条件,得EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)∴OA=OB=5∴∠OAB=∠OBA=45°∴FF′=AF′=y,EE′=BE′=x,∴AF=,BE=又∵∴∴又∵反比例函数在第二象限,∴.【点睛】此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.三、解答题(共66分)19、(1)y=38x+3;(2)四边形ADBE【解析】试题分析:对于直线y=34(1)当A与F重合时,根据F坐标确定出A坐标,进而确定出AB的长,由AB与BC的比值求出BC的长,确定出AD=BE,而AD与BE平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据AB与BC的长确定出D坐标,设直线DE解析式为y=kx+b,将D与E坐标代入求出k与b的值,即可确定出直线DE解析式;(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形,理由为:根据直线y=34x+6解析式设出A坐标,进而表示出AB的长,根据A与B横坐标相同确定出B坐标,进而表示出EB的长,发现EB=AD,而EB与AD平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据BC的长求出OC的长,表示出D坐标,设直线DE解析式为y=k1x+b1,将D与E坐标代入求出k1与b1试题解析:对于直线y=34令x=0,得到y=6;令y=0,得到x=﹣8,即E(﹣8,0),F(0,6),(1)当点A与点F重合时,A(0,6),即AB=6,∵AB:BC=2:1,∴BC=8,∴AD=BE=8,又∵AD∥BE,∴四边形ADBE是平行四边形;∴D(8,6),设直线DE解析式为y=kx+b(k、b为常数且k≠0),将D(8,6),E(﹣8,0)代入得:8k+b=6-8k+b=0解得:b=2,k=38则直线DE解析式为y=38(2)四边形ADBE仍然是平行四边形,理由为:设点A(m,34m+6)即AB=3∴BE=m+8,又∵AB:BC=2:1,∴BC=m+8,∴AD=m+8,∴BE=AD,又∵BE∥AD,∴四边形ADBE仍然是平行四边形;又∵BC=m+8,∴OC=2m+8,∴D(2m+8,34设直线DE解析式为y=k1x+b1(k1、b1为常数且k1≠0),将D与E坐标代入得:34解得:k1=38,b1则直线DE解析式为y=38考点:一次函数综合题.20、(1)作图见解析(2)作图见解析【解析】

(1)连接AD、BC相交于点O,Rt△AOB即为所求;(2)连接AD交BE于F,连接CF,四边形BFCD即为所求.【详解】(1)连接AD、BC相交于点O,Rt△AOB即为所求;(2)连接AD交BE于F,连接CF,四边形BFCD即为所求.【点睛】本题考查了尺规作图的问题,掌握直角三角形和菱形的性质是解题的关键.21、2【解析】

将直线y=2x+3与直线y=−2x−1组成方程组,求出方程组的解即为C点坐标,再求出A、B的坐标,得到AB的长,即可求出△ABC的面积.【详解】解:将直线y=2x+3与直线y=-2x-1联立成方程组得:解得,即C点坐标为(-1,1).∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=-2x-1与y轴的交点坐标为(0,-1),∴AB=4,∴.【点睛】本题考查了两条直线相交的问题,熟知函数图象上点的坐标特征是解题的关键.22、(1),;(2),【解析】

(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.【详解】(1)∴解得,,;(2)在这里,,b=-2,∴解得,,【点睛】本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:23、(1)见解析;(2);(3)【解析】

(1)根据正方形的性质和全等三角形的性质即可得出结论;(2)过作于,于,根据图形的面积得到,继而得出结论;(3)过作,,则,,根据平行四边形的面积公式得出,根据三角形的面积公式列方程即可得出结论.【详解】解:(1)如图①,∵四边形ABCD是正方形,∴,,∵,∴,∴.(2)如图②,过作于,于,∵∴∵,∴,∴;(2)如图③,过作,,则,,∵,∴,∴,∵,,∴,∵,,∴,,,;故答案为:.【点睛】本题考查的知识点是正方形的性质,通过作辅助线,利用面积公式求解是解此题的关键.24、(1)见解析;(2)AE+AG==4;(3)EM=.【解析】

(1)如图,作EM⊥AD于M,EN⊥AB于N.只要证明△EMD≌△ENF即可解决问题;

(2)只要证明△ADG≌△CDE,可得AG=EC即可解决问题;

(3)如图,作EH⊥DF于H.想办法求出EH,HM即可解决问题;【详解】(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE,∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论