




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南安市2025届八年级数学第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形2.下列各式正确的是()A.ba=b2a23.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(
)A.2,3,4 B.,, C.1,,2 D.7,8,94.若一次函数y=mx+n中,y随x的增大而减小,且知当x>2时,y<0,x<2时,y>0,则m、n的取值范围是.()A.m>0,n>0 B.m<0,n<0 C.m>0,n<0 D.m<0,n>05.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2 B.3 C. D.7.下列选项中,可以用来证明命题“若a²>1,则a>1”是假命题的反例是()A.a=-2. B.a==-1 C.a=1 D.a=28.如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为()A. B. C. D.9.分式有意义,则的取值范围为()A. B. C.且 D.为一切实数10.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7 B.8 C.7 D.711.生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n个三角形的面积为()A. B. C. D.12.若分式的值为0,则x的值为A.﹣1 B.0 C.2 D.﹣1或2二、填空题(每题4分,共24分)13.如图,正方形中,,点在边上,且.将沿对折至,延长交边于点,连接、.则下列结论:①:②;③:④.其中正确的有_(把你认为正确结论的序号都填上)14.如图,直线L1、L2、L3分别过正方形ABCD的三个顶点A、D、C,且相互平行,若L1、L2的距离为1,L2、L3的距离为2,则正方形的边长为__________.15.已知直线与直线平行,那么_______.16.一元二次方程x2﹣4=0的解是._________17.如图,梯形中,,点分别是的中点.已知两底之差是6,两腰之和是12,则的周长是____.18.如图,在Rt△ABC中,∠A=30°,斜边AB=12,CD⊥AB于D,则AD=_____________.三、解答题(共78分)19.(8分)某校八年级甲,乙两班各有名学生,为了解这两个班学生身体素质情况,进行了抽样调查.从这两个班各随机抽取名学生进行身体素质测试,测试成绩如下:甲班乙班整理上面数据,得到如下统计表:样本数据的平均数、众数.中位数如下表所示:根据以上信息,解答下列问题:(1)求表中的值(2)表中的值为()(3)若规定测试成绩在分以上(含分)的学生身体素质为优秀,请估计乙班名学生中身体素质为优秀的学生的人数.20.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:
解:甲=(9+4+7+4+6)=6,
s甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]
=(9+4+1+4+0)
=3.6
甲、乙两人射箭成绩统计表
第1次
第2次
第3次
第4次
第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.21.(8分)已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根.22.(10分)几何学的产生,源于人们对土地面积测量的需要,以面积早就成为人们认识图形性质与几何证明的有效工具,可以说几何学从一开始便与面积结下了不解之缘.我们已经掌握了平行四边形面积的求法,但是一般四边形的面积往往不易求得,那么我们能否将其转化为平行四边形来求呢?(1)方法1:如图①,连接四边形的对角线,,分别过四边形的四个顶点作对角线的平行线,所作四条线相交形成四边形,易证四边形是平行四边形.请直接写出S四边形ABCD和之间的关系:_______________.方法2:如图②,取四边形四边的中点,,,,连接,,,,(2)求证:四边形是平行四边形;(3)请直接写出S四边形ABCD与之间的关系:_____________.方法3:如图③,取四边形四边的中点,,,,连接,交于点.先将四边形绕点旋转得到四边形,易得点,,在同一直线上;再将四边形绕点旋转得到四边形,易得点,,在同一直线上;最后将四边形沿方向平移,使点与点重合,得到四边形;(4)由旋转、平移可得_________,_________,所以,所以点,,在同一直线上,同理,点,,也在同一点线上,所以我们拼接成的图形是一个四边形.(5)求证:四边形是平行四边形.(注意:请考生在下面2题中任选一题作答如果多做,则按所做的第一题计分)(6)应用1:如图④,在四边形中,对角线与交于点,,,,则S四边形ABCD=.(7)应用2:如图⑤,在四边形中,点,,,分别是,,,的中点,连接,交于点,,,,则S四边形ABCD=___________23.(10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?24.(10分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:(1)杨经理查看计划时发现:A类图书的标价是B类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本.请求出A、B两类图书的标价.(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A类图书每本按标价降低a元()销售,B类图书价格不变.那么书店应如何进货才能获得最大利润.25.(12分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.26.关于的一元二次方程求证:方程总有两个实数根若方程两根且,求的值
参考答案一、选择题(每题4分,共48分)1、C【解析】
利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.【点睛】本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.2、D【解析】
对于选项A,给ba的分子、分母同时乘以a可得ab对于选项B、C,只需取一对特殊值代入等式两边,再判断两边的值是否相等即可;对于选项D,先对xy+y2【详解】对于A选项,只有当a=b时ba=b对于B选项,可用特殊值法,令a=2、b=3,则a2+b同样的方法,可判断选项C错误;对于D选项,xy+y2x2-y故选D【点睛】本题可以根据分式的基本性质和因式分解的知识进行求解。3、C【解析】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故选C.4、D【解析】
根据图象和系数的关系确定m<0且直线经过点(2,0),将(2,0)代入求得.【详解】解:根据题意,m<0且直线经过点(2,0),∴,∴,∴m<0,n>0,故选:D.【点睛】本题考查了一次函数图象和系数的关系,一次函数图象上点的坐标特征,能够准确理解题意是解题的关键.5、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.6、A【解析】
如图,延长FD到G,使DG=BE,连接CG、EF,证△GCF≌△ECF,得到GF=EF,再利用勾股定理计算即可.【详解】解:如图,延长FD到G,使DG=BE,连接CG、EF∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS)∴CG=CE,∠DCG=∠BCE∴∠GCF=45°在△GCF与△ECF中∵GC=EC,∠GCF=∠ECF,CF=CF∴△GCF≌△ECF(SAS)∴GF=EF∵CE=,CB=6∴BE===3∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x∴EF==∴∴x=4,即AF=4∴GF=5∴DF=2∴CF===故选A.【点睛】本题考查1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质,作出辅助线构造全等三角形是解题的关键.7、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但a<2.故选A8、D【解析】
根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,
∴AB=2MN=13(m),
故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.9、B【解析】
直接利用分式有意义则分母不等于零进而得出答案.【详解】分式有意义,
则x-1≠0,
解得:x≠1.
故选:B.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.10、C【解析】
12和5为两条直角边长时,求出小正方形的边长7,即可利用勾股定理得出EF的值.【详解】∵AE=5,BE=12,即12和5为两条直角边长时,小正方形的边长=12-5=7,∴EF=;故选C.【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.11、D【解析】
根据勾股定理分别求出、,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.【详解】解:第1个三角形的面积,由勾股定理得,,则第2个三角形的面积,,则第3个三角形的面积,则第个三角形的面积,故选:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.12、C【解析】
根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.二、填空题(每题4分,共24分)13、①②③④【解析】
根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;由①和翻折的性质得出△ABG≌△AFG,△ADE≌△AFE,即可得出;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF.【详解】解:①正确,∵四边形ABCD是正方形,将△ADE沿AE对折至△AFE,∴AB=AD=AF,在△ABG与△AFG中,;△ABG≌△AFG(SAS);②正确,∵由①得△ABG≌△AFG,又∵折叠的性质,△ADE≌△AFE,∴∠BAG=∠FAG,∠DAE=∠EAF,∴∠EAG=∠FAG+∠EAF=90°×=45°;③正确,∵EF=DE=CD=2,设BG=FG=x,则CG=6-x,在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3,∴BG=3=6-3=GC;④正确,∵CG=BG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF,又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.14、【解析】
如图,过D作于D,交于E,交于F,根据平行的性质可得,再由同角的余角相等可得,即可证明,从而可得,根据勾股定理即可求出AD的长度.【详解】如图,过D作于D,交于E,交于F∵∴∴由同角的余角相等可得∵∴∴∴故答案为:.【点睛】本题考查了正方形与平行线的问题,掌握平行线的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.15、1【解析】
两直线平行,则两比例系数相等,据此可以求解.【详解】解:直线与直线平行,,故答案为:1.【点睛】本题考查了两条直线相交或平行问题,解题的关键是熟知两直线平行时两比例系数相等.16、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.17、1.【解析】
延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【详解】连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC-DK)=(DC-AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=1.故答案为:1.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.18、1【解析】
根据30°角所对的直角边是斜边的一半,可得BC=6,然后利用勾股定理求出AC,再次利用30°所对的直角边的性质得到CD=AC,最后用勾股定理求出AD.【详解】∵在Rt△ABC中,∠A=30°,斜边AB=12,∴BC=AB=6∴AC=∵在Rt△ACD中,∠A=30°∴CD=AC=∴AD=故答案为:1.【点睛】本题考查含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键.三、解答题(共78分)19、(1)72;(2)70;(3)20.【解析】
(1)利用平均数的公式,可以求出平均数m;(2)由众数的概念可得乙班的众数n的值是70;(3)用总人数乘以后两组数的频率之和即可得出答案.【详解】(1)的值为.(2)整理乙班数据可知70出现的次数最多,为三次,则乙班的众数n=(3)(人)答:乙班名学生中身体素质为优秀的学生约为人.【点睛】此题考查了频率分布直方图、频率分布表、平均数、众数,关键是读懂频数分布直方图和统计表,能获取有关信息,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20、(1)46(2)见解析(3)①乙1.6,判断见解析②乙,理由见解析【解析】
解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,乙=30÷5=6,所以答案为:4,6;(2)如图所示:(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.21、(1)见解析;(2)即m的值为0,方程的另一个根为0.【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t=,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.22、(1)S四边形ABCD;(2)见详解;(1)S四边形ABCD;(4)AEO,OEB;(5)见详解;(6);(7)【解析】
(1)先证四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,可得S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,即可得出结论;(2)证明,和,,即可得出结论;(1)由,可得S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,即可得出结论;(4)有旋转的定义即可得出结论;(5)先证,得到,再证,即可得出结论;(6)应用方法1,过点H作HM⊥EF与点M,再计算即可得出答案;(7)应用方法1,过点O作OM⊥IK与点M,再计算即可得出答案.【详解】解:方法一:如图,∵EF∥AC∥HD,EH∥DB∥FG,∴四边形AEBO,四边形BFCO,四边形CGDO,四边形DHAO都是平行四边形,∴S△ABO=S四边形AEBO,S△BCO=S四边形BFCO,S△CDO=S四边形CGDO,SADO=S四边形DHAO,∴.故答案为.方法二:如图,连接.(1),分别为,中点..,分别为,中点.,四边形为平行四边形(2),分别为,中点..∴S四边形MNHE=S△ABD,S四边形MNGF=S△CBD,∴故答案为.方法1.(1)有旋转可知;.故答案为∠AEO;∠OEB.(2)证明:有旋转知..旋转.四边形为平行四边形应用1:如图,应用方法1,过点H作HM⊥EF与点M,∵,∴∠AEM=60°,∠EHM=10°,∵,,∴EM=1,EH=6,EF=8,∴HM==,∴=EF·HM=24∴=,故答案为.应用2:如图,应用方法1,过点O作OM⊥IK与点M,,∵,∴∠MIO=60°,∠IOM=10°,∵,,∴IM=1,OI=6,IK=8,∴OM==,∴=KI·OM=24∴S四边形ABCD=,故答案为.【点睛】此题主要考查了平行四边形的判定与性质,旋转,三角形的中位线,三角形和平行四边形的面积,选择合适的方法来求面积是解决问题的关键.23、(1)6120元(2)答应涨价为5元.【解析】【分析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;(2)设涨价x元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解.【详解】(1)(500-8×20)×18
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- VB调试技巧试题及答案解析
- 气象电力服务合作协议
- 灯饰照明行业新年个人工作计划
- 提升员工忠诚度的策略计划
- 【通辽】2025年内蒙古通辽市扎鲁特旗教体系统事业单位招聘工作人员30人笔试历年典型考题及考点剖析附带答案详解
- 2025市区办公室租赁合同范本
- 行政法学重要实例分析试题及答案
- 财政政策与货币政策交互作用试题及答案
- 人力资源数字化转型的趋势与挑战计划
- 财务目标达成评估计划
- 《生态环境的密码:竺可桢的科学研究课件》
- 硕士外语水平考试指南与答案
- 2025年入团考试历年总结试题及答案
- 2025年福建省三明市中考二模生物试题(原卷版+解析版)
- 完形填空15篇(答案解析)-2025年中考英语分类专练(深圳专用)
- 2025年服装进货合同范本下载8篇
- 2025年事业单位e类考试真题及答案
- 2024年江苏省宝应县事业单位公开招聘紧缺人才37名笔试题带答案
- 《急性冠状动脉综合征》课件
- 武汉市2025届高中毕业生四月调研考试 试卷与解析
- 2025北京各区高三一模数学分类汇编解析 答案
评论
0/150
提交评论