2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省苏州市新区一中学八年级数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各点中,在反比例函数图象上的点是A. B. C. D.2.下列各组数不能作为直角三角形三边长的是()A.3,4,5 B.,, C.0.3,0.4,0.5 D.30,40,503.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A.AB=AD B.AC=BD C.∠ABC=90° D.∠ABC=∠ADC4.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.5.若分式有意义,则x的取值范围是A. B. C. D.6.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,23) B.(3,3) C.(4,3) D.(3,2)7.如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm8.正方形ABCD的边长为2,以AD为边作等边△ADE,则点E到BC的距离是()A.2+ B.2- C.2+,2- D.4-9.在四边形中,对角线和交于点,下列条件能判定这个四边形是菱形的是()A., B.,,C.,, D.,,10.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2二、填空题(每小题3分,共24分)11.如图,是的中位线,平分交于,,则的长为________.12.如图,升降平台由三个边长为1.2米的菱形和两个腰长为1.2米的等腰三角形组成,其中平台AM与底座A0N平行,长度均为24米,点B,B0分别在AM和A0N上滑动这种设计是利用平行四边形的________;为了安全,该平台作业时∠B1不得超过60°,则平台高度(AA0)的最大值为________

米13.如图所示四个二次函数的图象中,分别对应的是①y=ax1;②y=bx1;③y=cx1;④y=dx1.则a、b、c、d的大小关系为_____.14.已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)15.如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.16.已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.17.化简:(2)2=_____.18.一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.三、解答题(共66分)19.(10分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.20.(6分)某幼儿园打算在六一儿童节给小朋友买礼物,计划用元购买一定数量的棒棒糖,商店推出优惠,购买达到一定数量之后,购买总金额打八折,此时,王老师发现,花元可以买到计划数量的倍还多个,棒棒糖的原单价是多少?21.(6分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.22.(8分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.23.(8分)有20个边长为1的小正方形,排列形式如图所示,请将其分割,拼接成一个正方形,求拼接后的正方形的边长.24.(8分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是_____km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距_____km.25.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).26.(10分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.2、B【解析】选项A,,三角形是直角三角形;选项B,,三角形不是直角三角形;选项C,,三角形是直角三角形;选项D,,三角形是直角三角形;故选B.3、A【解析】

根据菱形的定义和判定定理即可作出判断.【详解】A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90°时,平行四边形ABCD是矩形,故C选项不符合题意;D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,故选A.【点睛】本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.4、C【解析】

根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.5、C【解析】

根据分母不为0时分式有意义进行求解即可得.【详解】由题意得:x-2≠0,解得:x≠2,故选C【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.6、A【解析】

作AM⊥x轴,根据等边三角形的性质得出OA=OB=2,∠AOB=60°,利用含30°角的直角三角形的性质求出OM=12OA=1,即可求出AM的长,进而可得A点坐标,即可得出直线OA的解析式,把x=3代入可得A′点的坐标,由一对对应点A与A′的移动规律即可求出点B′的坐标【详解】如图,作AM⊥x轴于点M,∵等边△OAB的顶点B坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=12OA=1,AM=3OM=3∴A(1,3),∴直线OA的解析式为:y=3x,∴当x=3时,y=33,∴A′(3,33),∴将A点向右平移2个单位,再向上平移23个单位后得到A′点,∴将B(2,0)向右平移2个单位,再向上平移23个单位后可得到B′点,∴点B′的坐标为(4,23),故选A【点睛】本题考查坐标与图形变化—平移及等边三角形的性质,根据等边三角形的性质得到平移规律是解题关键.7、D【解析】

根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【详解】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选D.8、C【解析】

由等边三角形的性质可得点E到AD上的距离为,分两种情况可求点E到BC的距离.【详解】解:∵等边△ADE的边长为2∴点E到AD上的距离EG为,当△ADE在正方形外面,∴点E到BC的距离=2+当△ADE在正方形里面∴点E到BC的距离=2-故选:C.【点睛】本题考查了正方形的性质,等边三角形的性质,熟练运用正方形的性质是本题的关键.9、D【解析】

根据菱形的判定方法逐一进行判断即可.【详解】A.由,只能判定四边形是平行四边形,不一定是菱形,故该选项错误;B.由,,只能判定四边形是矩形,不一定是菱形,故该选项错误;C.由,,可判断四边形可能是等腰梯形,不一定是菱形,故该选项错误;D.由,能判定四边形是菱形,故该选项正确;故选:D.【点睛】本题主要考查菱形的判定,掌握菱形的判定方法是解题的关键.10、C【解析】过点P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分别平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故选C.二、填空题(每小题3分,共24分)11、1【解析】

EF是△ABC的中位线,可得DE∥BC,又BD平分∠ABC交EF于D,则可证得等角,进一步可证得△BDE为等腰三角形,从而求出EB.【详解】解:∵EF是△ABC的中位线

∴EF∥BC,∠EDB=∠DBC

又∵BD平分∠ABC

∴∠EBD=∠DBC=∠EDB

∴EB=ED=1.

故答案为1.【点睛】本题考查的是三角形中位线的性质和等腰三角形的性质,比较简单.12、不稳定性;4.2【解析】

(1)根据四边形的不稳定性即可解决问题.(1)当∠B1=60°时,平台AA0的高度最大,解直角三角形A1B0A0,可得A0A1的长,再由AA3=A3A1=A1A1=A1A0,即可解决问题.【详解】解:(1)因为四边形具有不稳定性,点B,B0分别在AM和A0N上滑动,从而达到升降目的,因而这种设计利用了平行四边形的不稳定性;(1)由图可知,当∠B1=60°时,平台AA0的高度最大,=30°,B0A1=1A1C1=1.4,则A0A1=A1B0sin∠A1B0A0=1.4×=1.1.

又∵AA3=A3A1=A1A1=A1A0=1.1,则AA0=4×1.1=4.2.故答案为:不稳定性,4.2.【点睛】本题考查了解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、a>b>d>c【解析】

设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),

所以,a>b>d>c.【点睛】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.14、61.8m或38.2m【解析】由于C为线段AB=100cm的黄金分割点,则AC=100×61.8m或AC=100-38.238.2m.15、【解析】

延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.【详解】解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,

∵DE平分△ABC的周长,CD=DB,

∴ME=EC,

∴DE=BM,

∵∠BAC=60°,

∴∠BAM=120°,

∵AM=AB,AN⊥BM,

∴∠BAN=60°,BN=MN,∴∠ABN=30°,∴AN=AB=1,∴BN=,

∴BM=2,

∴DE=,

故答案为:.【点睛】本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.16、5【解析】

根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【详解】∵四边形ABCD为正方形,

∴∠BAE=∠D=90°,AB=AD,

在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,

∴△ABE≌△DAF(SAS),

∴∠ABE=∠DAF,

∵∠ABE+∠BEA=90°,

∴∠DAF+∠BEA=90°,

∴∠AGE=∠BGF=90°,

∵点H为BF的中点,

∴GH=BF,

∵BC=8,CF=CD-DF=8-2=6,

∴BF==10,

∴GH=BF=5.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.17、1.【解析】

根据二次根式的性质:进行化简即可得出答案.【详解】故答案为:1.【点睛】本题考查了二次根式的性质及运算.熟练应用二次根式的性质及运算法则进行化简是解题的关键.18、(0,-1)【解析】

由图象经过点M,故将M(-1,-2)代入即可得出k的值.【详解】解:∵一次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代入得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).【点睛】本题考查待定系数法求函数解析式,难度不大,直接代入即可.三、解答题(共66分)19、证明见解析.【解析】

由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.【详解】证明:四边形是平行四边形,∴,.∵,∴.∴,∵,,∴四边形是平行四边形.【点睛】本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.20、棒棒糖的原单价为3元.【解析】【分析】设棒棒糖的原单价是x元,由等量关系“优惠后,花480元可以买到计划数量的2倍还多20个”,列出方程,解方程进行检验后即可得答案.【详解】设棒棒糖的原单价为x元,根据题意,得:×2+20=,解得:x=3,经检验:x=3是原方程的根,答:棒棒糖的原单价为3元.【点睛】本题考查了分式方程的应用,弄清题意,找出等量关系列出方程是解题的关键.21、投递快递总件数的月平均增长率是10%.【解析】

设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.【详解】解:设投递快递总件数的月平均增长率是x,依题意,得:30(1+x)2=36.3则1+x=±1.1解得:x1=0.1=10%,x2=−2.1(舍),答:投递快递总件数的月平均增长率是10%.【点睛】考核知识点:一元二次方程的应用.理解增长率是关键.22、高铁列车平均速度为300km/h.【解析】

设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,利用高铁列车行驶时间比原特快列车行驶时间缩短了3小时,这一等量关系列出方程解题即可【详解】设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,由题意得:+3=,解得:x=100,经检验:x=100是原方程的解,则3×100=300(km/h);答:高铁列车平均速度为300km/h.【点睛】本题考查分式方程的简单应用,本题关键在于读懂题意列出方程,特别注意分式方程求解之后需要检验23、【解析】

利用正方形的面积公式先求出拼接后的正方形的边长,观察边长可知是直角边长分别为2和4的直角三角形的斜边,由此可对图形进行分割,然后再进行拼接即可.【详解】因为20个小正方形的面积是20,所以拼接后的正方形的边长=,22+42=20,所以如图①所示进行分割,拼接的正方形如图②所示.【点睛】本题考查作图-应用与设计,正方形的判定和性质等知识,解题的关键是学会用数形结合的思想解决问题.24、(1)V甲=60km/h(2)y乙=90x-90(3)220【解析】

(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【详解】(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90;(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km.【点睛】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.25、(1)证明见解析;(1)证明见解析.【解析】

(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论