




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西运城大禹中学2025届八年级数学第二学期期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列平面图形中,不是轴对称图形的是()A. B. C. D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,3,2 B.1,2,5C.5,12,13 D.1,2,23.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解集是()A.x≥2 B.x≤2 C.x≥4 D.x≤44.如图,中,,的平分线交于点,连接,若,则的度数为A. B. C. D.5.若分式有意义,则的取值范围是()A. B. C. D.6.下列各式:,,+y,,,其中分式共有()A.1个 B.2个 C.3个 D.4个7.勾股定理是“人类最伟大的十个科学发现之一”.中国对勾股定理的证明最早出现在对《周髀算经》的注解中,它表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.在《周髀算经》注解中证明勾股定理的是我国古代数学家()A.祖冲之 B.杨辉 C.刘徽 D.赵爽8.观察下列图形,其中既是轴对称又是中心对称图形的是()A. B. C. D.9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1)B.(-1,3)C.(3,1)D.(-3,-1)10.如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的中垂线交于点O,连接OC,则∠AOC的度数为()A.151° B.122° C.118° D.120°11.某中学46名女生体育中考立定跳远成绩如下表:跳远成绩160170180190200210人数3166984这些立定跳远成绩的中位数和众数分别是A.185,170 B.180,170 C.7.5,16 D.185,1612.一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为()A.25 B.16 C.20 D.10二、填空题(每题4分,共24分)13.的计算结果是___________.14.如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.15.已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是______cm,面积是______cm1.16.如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.17.与最简二次根式是同类二次根式,则a=__________.18.数据1,-3,1,0,1的平均数是____,中位数是____,众数是____,方差是___.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.(1)求一次函数和正比例函数的解析式;(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.20.(8分)如图,中,是的中点,将沿折叠后得到,且
点在□内部.将延长交于点.(1)猜想并填空:________(填“”、“”、“”);(2)请证明你的猜想;(3)如图,当,设,,,证明:.21.(8分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(10分)如图,为线段上一动点,分别过点作,,连接.已知,设.(1)用含的代数式表示的值;(2)探究:当点满足什么条件时,的值最小?最小值是多少?(3)根据(2)中的结论,请构造图形求代数式的最小值.23.(10分)如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.24.(10分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.25.(12分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段BE,AD,CN所满足的等量关系,并证明你的结论.(3)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为______________(直接写出答案).26.某校为了解全校学生上学期参加“生涯规划”社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率活动次数x频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15bm15<x≤182n根据以上图表信息,解答下列问题:(1)表中a=,b=,m=,n=.(2)请把频数分布直方图补充完整(画图后请标注相应的数据);
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2、D【解析】试题分析:A、∵12+(3)2=22,∴能组成直角三角形;B、∵12+22=(5)2,∴能组成直角三角形;C、∵52+122=132,∴能组成直角三角形;D、∵12+(2)2≠(2)2,∴不能组成直角三角形.故选D.考点:勾股定理的逆定理.3、B【解析】
解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时,自变量的取值范围.【详解】不等式ax+b≥0的解集为x≤1.
故选B.【点睛】本题考查的知识点是利用图象求解各问题,解题关键是先画函数图象,根据图象观察,得出结论.4、D【解析】
由平行四边形的对边相互平行和平行线的性质得到∠ABC=80°;然后由角平分线的性质求得∠EBC=∠ABC=40°;最后根据等腰三角形的性质解答.【详解】四边形是平行四边形,,..又,.是的平分线,.又,..故选.【点睛】考查了平行四边形的性质,此题利用了平行四边形的对边相互平行和平行四边形的对角相等的性质.5、A【解析】
根据分式有意义的条件:分母不等于0,即可求解.【详解】解:根据题意得:x-1≠0,
解得:x≠1.
故选:A.【点睛】此题考查分式有意义的条件,正确理解条件是解题的关键.6、B【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式.利用这点进行解题即可.【详解】在,,,,,中是分式的有:,,故B正确.【点睛】本题考查的是分式的定义,解题的关键是找到分母中含有字母的式子,同时一定要注意π不是字母.7、D【解析】
在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.【详解】在《周髀算经》注解中证明勾股定理的是我国古代数学家赵爽.故选D.【点睛】我国古代的数学家很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明.最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明.后人称它为“赵爽弦图”.8、D【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A.是中心对称图形,不是轴对称图形,选项不符合题意;
B.是轴对称图形,不是中心对称图形,选项不符合题意;
C.不是中心对称图形,也不是轴对称图形,选项不符合题意;
D.是中心对称图形,也是轴对称图形,选项符合题意,
故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.9、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.10、B【解析】
根据等腰三角形的性质得出AO垂直平分BC,根据线段垂直平分线性质得出AO=BO、OB=OC,利用等边对等角及角平分线性质,内角和定理求出所求即可.【详解】连接BO,延长AO交BC于E,∵AB=AC,AO平分∠BAC,∴AO⊥BC,AO平分BC,∴OB=OC,∵O在AB的垂直平分线上,∴AO=BO,∴AO=CO,∴∠OAC=∠OCA=∠OAD=×58°=29°,∴∠AOC=180°-2×29°=122°,故选B.【点睛】此题考查了等腰三角形的性质,以及线段垂直平分线的性质,熟练掌握各自的性质是解本题的关键.11、B【解析】
根据中位数和众数的定义求解即可.【详解】由上表可得中位数是180,众数是170故答案为:B.【点睛】本题考查了中位数和众数的问题,掌握中位数和众数的定义是解题的关键.12、C【解析】
根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.【详解】解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;
所以此三角形的面积为:×10×4=1.故选:C.【点睛】本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二、填空题(每题4分,共24分)13、3.5【解析】
原式=4-=3=3.5,故答案为3.5.14、25°.【解析】在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.15、10,14【解析】解:∵菱形的两条对角线长为8cm和6cm,∴菱形的两条对角线长的一半分别为4cm和3cm,根据勾股定理,边长==5cm,所以,这个菱形的周长是5×4=10cm,面积=×8×6=14cm1.故答案为10,14.点睛:本题考查了菱形的性质,熟练掌握菱形的对角线互相垂直平分是解题的关键,另外,菱形的面积可以利用底乘以高,也可以利用对角线乘积的一半求解.16、(2,−2)或(6,2).【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).【点睛】本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.17、1.【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【详解】∵与最简二次根式是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.18、0、1、1、2.4.【解析】
根据平均数、中位数、众数、方差的定义求解即可.【详解】平均数是:(1-3+1+0+1)÷5=0;中位数是:1;众数是:1;方差是:=2.4.故答案为:0;1;1;2.4【点睛】此题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.三、解答题(共78分)19、(1)y=﹣x+4,;(2)S=2x(0<x≤3).【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;(2)根据三角形的面积公式即可得到结论.【详解】(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).【点睛】本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.20、(1)=;(2)见解析;(3)见解析【解析】
(1)根据折叠的性质、平行四边形的性质、以及等腰三角形的判定与性质可猜想为相等;(2)先证明∠EDF=∠EGF,再证明EG=ED,则等边对等角得:∠EGD=∠EDG,相减可得结论;(3)分别表示BF、CF、BC的长,证明ABCD是矩形得:∠C=90°,在Rt△BCF中,由勾股定理列式可得结论.【详解】解:(1)GF=DF,故答案为:=;(2)理由是:连接DG,由折叠得:AE=EG,∠A=∠BGE,∵E在AD的中点,∴AE=ED,∴ED=EG,∴∠EGD=∠EDG,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠BGE+∠EGF=180°,∴∠EDF=∠EGF,∴∠EDF-∠EDG=∠EGF-∠EGD,即∠GDF=∠DGF,∴GF=DF;(3)证明:如图2,由(2)得:DF=GF=b,由图可得:BF=BG+GF=a+b,由折叠可得:AB=BG=a,AE=EG=c,在ABCD中,BC=AD=2AE=2c,CD=AB=a,∴CF=CD-DF=a-b,∵∠A=90°,∴ABCD是矩形,∴∠C=90°,在Rt△BCF中,由勾股定理得,BC2+CF2=BF2,∴(2c)2+(a-b)2=(a+b)2,整理得:c2=ab.【点睛】本题考查了平行四边形的性质、矩形的性质和判定、勾股定理、折叠的性质、等腰三角形的性质与判定,难度适中,熟练掌握折叠前后的边和角相等是关键.21、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】
(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;
(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°
∴∠ACB=180°-∠CBA-∠CAB=30°;
(2)由(1)可知∠ACB=∠CAB=30°,
∴AB=CB=30×=20(海里),∠CBD=60°,
过点C作CD⊥AB于点D,在Rt△CBD中,
CD=BCsin60°=10(海里)
10>15
∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22、(1);(2)三点共线时;(3)2【解析】试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.(1);(2)当三点共线时,的值最小.(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.过点作交的延长线于点,得矩形,则,1.所以,即的最小值为2.考点:本题考查的是轴对称-最短路线问题点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.23、,证明略.【解析】
证明:四边形是平行四边形,..又,...24、(1)详见解析;(2)是直角三角形,理由详见解析.【解析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.【点睛】本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.25、(1)①补图见解析;②证明见解析;(2)2BE=AD+CN,证明见解析;(3).【解析】分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;(2)BE=AD+CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF=CN,由线段间的关系即可证出结论;(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.详解:(1)①依题意补全图形,如图1所示.②证明:连接CE,如图2所示.∵四边形ABCD是正方形,∴∠BCD=90°,AB=BC,∴∠ACB=∠ACD=∠BCD=45°,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 经济安全战略的制定试题及答案
- 2025年软考重要注意事项及试题及答案
- 战略实施中的个体因素重要性试题及答案
- 网络数据加密方法试题与答案总结
- 软件设计师考试重要知识点试题及答案
- 2025年VB考试复习指南及试题与答案
- 2025不动产抵押协议合同范本
- 杭汽轮合作协议
- 结果导向的工作方法计划
- 从失败中学习的个人计划
- 盆腔器官脱垂诊疗规范与指南
- 第十一讲中华一家和中华民族格局底定(清朝中期)-中华民族共同体概论专家大讲堂课件
- GB/T 7573-2025纺织品水萃取液pH值的测定
- 《会计准则、应用指南汇编2024上册》
- 出入境安全教育
- 肥胖患者的护理常规
- 汽车液压主动悬架系统的设计与仿真
- 心跳呼吸骤停护理查房课件
- 全球玉米育种技术研究进展与展望
- 《马尔可夫预测》课件
- 电脑和打印机维保服务投标文件、方案
评论
0/150
提交评论