2025届四川省绵阳宜溪中学心八下数学期末考试试题含解析_第1页
2025届四川省绵阳宜溪中学心八下数学期末考试试题含解析_第2页
2025届四川省绵阳宜溪中学心八下数学期末考试试题含解析_第3页
2025届四川省绵阳宜溪中学心八下数学期末考试试题含解析_第4页
2025届四川省绵阳宜溪中学心八下数学期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省绵阳宜溪中学心八下数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,中,点是边的中点,交对角线于点,则等于()A. B. C. D.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时 B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇 D.甲到B地比乙到A地早小时3.式子有意义,则x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤14.如图,为等边三角形,,、相交于点,于点,且,,则的长为()A.7 B.8 C.9 D.105.若点Α在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A.b>2 B.b>-2 C.b<2 D.b<-26.一个多边形的每个内角均为108º,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h8.正方形具有而菱形不一定具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线平分一组对角9.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是()A.甲 B.乙 C.甲、乙一样 D.不能确定10.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.要用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,首先应假设_____.12.如图,一张纸片的形状为直角三角形,其中,,,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为______cm.13.如图,在▱ABCD中,若∠A=63°,则∠D=_____.14.已知一组数据,,的方差为4,那么数据,,的方差是___________.15.已知实数、满足,则_____.16.已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.17.计算:______.18.小丽计算数据方差时,使用公式S2=,则公式中=__.三、解答题(共66分)19.(10分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.20.(6分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。21.(6分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.22.(8分)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.23.(8分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表:行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%、30%、50%,那么两个班级的排名顺序又怎样?24.(8分)如图,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动.(1)如果点,分别从点,同时出发,那么几秒后,的面积等于6?(2)如果点,分别从点,同时出发,那么几秒后,的长度等于7?

25.(10分)已知方程组,当m为何值时,x>y?26.(10分)如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由

参考答案一、选择题(每小题3分,共30分)1、B【解析】

如图,证明AD∥BC,AD=BC;得到△DEF∽△BCF,进而得到;证明BC=AD=2DE,即可解决问题.【详解】四边形为平行四边形,;,;点是边的中点,,.故选B.【点睛】该题主要考查了平行四边形的性质、相似三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行四边形的性质、相似三角形的判定及其性质是关键.2、D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25=80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3、C【解析】

试题分析:由二次根式的概念可知被开方数为非负数,由此有x-1≥0,所以x≥1,C正确考点:二次根式有意义的条件4、C【解析】

分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.【详解】解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD(SAS);∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ中,BP=2PQ=8;又∵PE=1,∴AD=BE=BP+PE=1.故选:C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.5、D【解析】分析:由点(m,n)在一次函数的图像上,可得出3m+b=n,再由3m-n>1,即可得出b<-1,此题得解.详解:∵点A(m,n)在一次函数y=3x+b的图象上,

∴3m+b=n.

∵3m-n>1,

∴3m-(3m+b)>1,即-b>1,∴b<-1.

故选D.点睛:考查了一次函数图象上点的坐标特征:点的坐标满足函数的解析式,根据一次函数图象上点的坐标特征,再结合3m-n>1,得出-b>1是解题的关键.6、C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.7、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.8、A【解析】试题分析:根据正方形、菱形的性质依次分析各选项即可判断.正方形具有而菱形不一定具有的性质是对角线相等故选A.考点:正方形、菱形的性质点评:本题属于基础应用题,只需学生熟练掌握正方形、菱形的性质,即可完成.9、A【解析】

根据方差的概念判断即可.【详解】在平均数相同的情况下,方差小的更稳定,故选A.【点睛】本题考查方差的意义,关键在于牢记方差的概念.10、D【解析】

根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每小题3分,共24分)11、每一个角都小于45°【解析】试题分析:反证法的第一步是假设命题的结论不成立,据此可以得到答案.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应假设每一个角都小于45°.考点:此题主要考查了反证法点评:解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.12、3【解析】

在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.【详解】在Rt△ABC中,∵AC=6,BC=8,∴AB==10,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=6,DE=DC,∠AED=∠C=90°,∴BE=AB-AE=10-6=4,设CD=x,则BD=8-x,在Rt△BDE中,∵BE2+DE2=BD2,∴42+x2=(8-x)2,解得x=3,即CD的长为3cm.故答案为3【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.13、117°【解析】

根据平行线的性质即可解答【详解】ABCD为平行四边形,所以,AB∥DC,所以,∠A+∠D=180°,∠D=180°-63°=117°。【点睛】此题考查平行线的性质,解题关键在于利用同旁内角等于180°14、4【解析】

设数据,,的平均数为m,据此可得数据a+2,b+2,c+2的平均数为m+2,然后根据方差公式进行计算即可得.【详解】设数据,,的平均数为m,则有a+b+c=3m,=4,∴a+2,b+2,c+2的平均数为(a+2+b+2+c+2)÷3=(3m+6)÷3=m+2,方差为:==4,故答案为:4.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.15、3【解析】

根据分式的运算法则即可求出答案.【详解】解:等式的右边==等式的左边,

∴,解得:,

∴A+B=3,

故答案为:3【点睛】本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法.16、(5,-)或(5,-).【解析】

由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.【详解】∵AE分△ABC的面积比为1:2,点E在线段BC上,∴BE:CE=1:2或BE:CE=2:1.∵B(5,1),C(5,-6),∴BC=1-(-6)=2.当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).故答案为:(5,-)或(5,-).【点睛】本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.17、1【解析】

根据分数指数幂的定义,转化为根式即可计算.【详解】==1.故答案为1.【点睛】本题考查了分数指数幂,解题的关键是熟练掌握分数指数幂的定义,转化为根式进行计算,属于基础题.18、1【解析】分析:根据题目中的式子,可以得到的值,从而可以解答本题.详解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=1.故答案为1.点睛:本题考查了方差、平均数,解答本题的关键是明确题意,求出相应的平均数.三、解答题(共66分)19、见解析【解析】

据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.【详解】解:证明:连接BF、DE,如图所示:∵,,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,

∵E、F分别是OA、OC的中点,

∴OE=OA,OF=OC,

∴OE=OF,

∴四边形BFDE是平行四边形,

∴BE=DF.【点睛】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.20、(1)见解析;(2)见解析【解析】

(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);(2)∵△ABE≌△FCE,∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.【点睛】此题考考查矩形的判定,平行四边形的性质,全等三角形的判定与性质,解题关键在于掌握各判定定理21、(1)详见解析;(2)正方形的边长为8cm.【解析】

(1)根据两角对应相等的两个三角形相似即可证明;

(2)利用相似三角形的性质,构建方程即可解决问题;【详解】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为xcm.∴AP=AD-x=12-x(cm)∵△AEF∽△ABC,AD⊥BC,∴,∴,∴x=8,∴正方形的边长为8cm.【点睛】本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.22、(1)证明见解析;(2)CE=.【解析】

(1)利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,进而得出答案;(2)首先过点D作DN⊥BC于点N,再利用平行四边形的性质结合勾股定理得出DF的长,进而得出答案.【详解】(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴DE=FC,DE∥FC,∴四边形CEDF是平行四边形;(2)过点D作DN⊥BC于点N,∵四边形ABCD是平行四边形,∠A=60°,∴∠BCD=∠A=60°,∵AB=3,AD=4,∴FC=2,NC=DC=,DN=,∴FN=,则DF=EC==.【点睛】本题考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键.23、(1)根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)两个班级的排名顺序发生变化,甲班第一,乙班第二.【解析】

(1)根据算术平均数的计算方法计算甲、乙班的平均数,通过比较得出得出结论,(2)利用加权平均数的计算方法分别计算甲、乙班的总评成绩,比较做出判断即可.【详解】(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9∵88>86.9∴甲班高于乙班,答:两个班级的排名顺序发生变化,甲班第一,乙班第二.【点睛】考查算术平均数、加权平均数的意义及计算方法,解题的关键是掌握算术平均数、加权平均数的计算.24、(1)出发1秒后,的面积等于6;(2)出发0秒或秒后,的长度等于7.【解析】

(1)设秒后,的面积等于6,根据路程=速度×时间,即可用x表示出AP、BQ和BP的长,然后根据三角形的面积公式列一元二次方程,并解方程即可;(2)设秒后,的长度等于7,根据路程=速度×时间,即可用y表示出AP、BQ和BP的长,利用勾股定理列一元二次方程,并解方程即可.【详解】解:(1)设秒后,的面积等于6,∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动∴,∴则有∴(此时2×6=12>BC,故舍去)答:出发1秒后,的面积等于6(2)设秒后,的长度等于7∵点从点开始沿边向点以的速度移动,点从点开始沿边向点以2的速度移动∴,∴解得答:出发0秒或秒后,的长度等于7.【点睛】此题考查的是一元二次方程的应用,掌握几何问题中的等量关系和行程问题公式是解决此题的关键.25、.【解析】

解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.【详解】解:,②×2﹣①得:x=m﹣3③,将③代入②得:y=﹣m+5,∴得,∵x>y,∴m﹣3>﹣m+5,解得m>4,∴当m>4时,x>y.26、(1)A(-4,0);B(0,4);C(2,0);(2)①点E的位置见解析,E(,0);②D点的坐标为(-1,3)或(,)【解析】

(1)先利用一次函数图象上点的坐标特点求得点A、B的坐标;然后把B点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论