




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市未央区2025届八年级数学第二学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣ B.﹣ C.﹣3 D.﹣22.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A., B.C.,, D.,3.若分式x2x-1□xA.+ B.— C.—或÷ D.+或×4.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)5.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形6.八边形的内角和、外角和共多少度()A. B. C. D.7.关于函数,下列说法正确的是()A.自变量的取值范围是 B.时,函数的值是0C.当时,函数的值大于0 D.A、B、C都不对8.若,则的值为()A.14 B.16 C.18 D.209.已知,如图一次函数y1=ax+b与反比例函数y2=的图象如图示,当y1<y2时,x的取值范围是(
)A.x<2
B.x>5
C.2<x<5
D.0<x<2或x>510.已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y111.某校规定学生的平时作业,期中考试,期末考试三项成绩分别是按30%、30%、40%计人学期总评成绩,小明的平时作业,期中考试,期末考试的英语成绩分别是93分、90分、96分,则小明这学期的总评成绩是()A.92 B.90 C.93 D.93.312.当1<a<2时,代数式+|1-a|的值是()A.-1 B.1 C.2a-3 D.3-2a二、填空题(每题4分,共24分)13.已知是实数,且和都是整数,那么的值是________.14.如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.15.在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确”.请回答:小云的作图依据是____________.16.如图,双曲线()与直线()的交点的横坐标为,2,那么当时,_______(填“”、“”或“”).17.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.18.函数的自变量x的取值范围是.三、解答题(共78分)19.(8分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;20.(8分)某商品的进价为每件40元,售价每件不低于60元且不高于80元,当售价为每件60元时,每个月可卖出100件;经调查发现,每件商品每上涨1元,每月少卖出2件.设每件商品的售价为x元(x为正整数).(1)求每个月的销售利润;(用含有x代数式表示)(2)若每个月的利润为2250元,定价应为多少元?21.(8分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.22.(10分)如图,在四边形ABCD中,,,,点P自点A向D以的速度运动,到D点即停止点Q自点C向B以的速度运动,到B点即停止,点P,Q同时出发,设运动时间为.用含t的代数式表示:______;______;______.(2)当t为何值时,四边形APQB是平行四边形?23.(10分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.24.(10分)如图,在四边形ABCD中,AC⊥CD,若AB=4,BC=5,AD=2,∠D=30°,求四边形ABCD的面积.25.(12分)如图,Rt△ABO的顶点A是双曲线y1=与直线y2=-x-(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求△AOC的面积.(3)直接写出使y1>y2成立的x的取值范围26.为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)
参考答案一、选择题(每题4分,共48分)1、B【解析】
直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【详解】解:∵在Rt△AOB中,OA=2,AB=1,
∴OB==.
∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,
∴OC=OB=,
∴点C表示的实数是-.
故选B.【点睛】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.2、A【解析】
根据正方形的判定定理即可求解.【详解】A∵,∴四边形ABCD为矩形,由,所以矩形ABCD为正方形,B.,四边形ABCD为菱形;C.,,,四边形ABCD为菱形;D.,,不能判定四边形ABCD为正方形,故选A.【点睛】此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.3、C【解析】
依次计算+、-、×、÷,再进行判断.【详解】当□为“-”时,x2当□为“+”时,x2当□为“×”时,x2当□为“÷”时,x2所以结果为x的有—或÷.故选:C.【点睛】考查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.4、A【解析】对于平行四边形MNEF,点N的对称点即为点F,所以点F到X轴的距离为2,到Y轴的距离为1.即点N到X、Y轴的距离分别为2、1,且点N在第三象限,所以点N的坐标为(—1,—2)5、D【解析】试题分析:A.平行四边形的对角线互相平分,说法正确;B.对角线互相平分的四边形是平行四边形,说法正确;C.菱形的对角线互相垂直,说法正确;D.对角线互相垂直的四边形是菱形,说法错误.故选D.考点:1.平行四边形的判定;2.菱形的判定.6、B【解析】
n边形的内角和是(n−2)•180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和;任何多边形的外角和是360度,与多边形的边数无关;再把它们相加即可求解.【详解】解:八边形的内角和为(8−2)•180°=1080°;外角和为360°,1080°+360°=1440°.故选:B.【点睛】本题考查了多边形内角与外角,正确记忆理解多边形的内角和定理,以及外角和定理是解决本题的关键.7、C【解析】
根据该函数的性质进行判断即可.【详解】A.根据可得,自变量的取值范围是,错误;B.将代入函数解析式中,无意义,错误;C.当时,,正确;D.A、B错误,C正确,故选项D错误;故答案为:C.【点睛】本题考查了函数的性质问题,掌握函数的定义以及性质是解题的关键.8、C【解析】
先将移项得:,然后两边平方,再利用完全平方公式展开,整理即可得解.【详解】∵,∴,∴,∴,故选C.【点睛】本题考查了完全平方公式,牢牢掌握平方公式是解决本题的关键.9、D【解析】
根据图象得出两交点的横坐标,找出一次函数图象在反比例图象下方时x的范围即可.【详解】根据题意得:当y1<y2时,x的取值范围是0<x<2或x>1.故选D.【点睛】本题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,灵活运用数形结合思想是解答本题的关键.10、B【解析】
先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【详解】∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.∵﹣1<1<3,∴y1<0<y1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.11、D【解析】
小明这学期总评成绩是平时作业、期中练习、期末考试的成绩与其对应百分比的乘积之和.【详解】解:小明这学期的总评成绩是93×30%+90×30%+96×40%=93.3(分)故选:D.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.12、B【解析】
解:∵1<a<2,∴=|a-2|=-(a-2),|1-a|=a-1,∴+|1-a|=-(a-2)+(a-1)=2-1=1.故选B.二、填空题(每题4分,共24分)13、【解析】
根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.【详解】由题意设m+=a(a为整数),=b(b为整数),∴m=a-,∴=b,整理得:
,∴b2-8=1,8a-ab2=-b,解得:b=±3,a=±3,∴m=±3-.故答案为±3-.【点睛】本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..14、1【解析】在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.解:作CF⊥AD于F点,则CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴设CF=1x,则FD=12x,由题意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案为1.本题主要考查的是锐角三角函数的定义和勾股定理的应用.15、①四边相等的四边形是菱形②菱形的对边平行【解析】
利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.【详解】由作法得BA=BC=AD=CD,所以四边形ABCD为菱形,所以AD∥BC,故答案为:四条边相等的四边形为菱形,菱形的对边平行.【点睛】本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16、>【解析】
观察x=3的图象的位置,即可解决问题.【详解】解:观察图象可知,x=3时,反比例函数图象在一次函数的图象的上面,所以y1>y1.故答案为:>.【点睛】本题考查反比例函数与一次函数的交点问题,正确认识图形是解题的关键,学会利用图象由自变量的取值确定函数值的大小,属于中考常考题型.17、或1.【解析】
试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,故答案为8+4或1.考点:1.图形的剪拼;2.三角形中位线定理.18、.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题(共78分)19、(1)BC的解析式是y=−x+3;(2)当0<t⩽2时,S=−3t+6;当t>2时,S=3t−6.【解析】
(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.【详解】(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
∵OC=3OA,
∴OC=3,即C的坐标是(0,3).
∵∠CBA=45∘,
∴∠OCB=∠CBA=45∘,
∴OB=OC=3,则B的坐标是(3,0).
设BC的解析式是y=kx+b,则,
解得:,
则BC的解析式是y=−x+3;
(2)当0<t⩽2时,P在线段AB上,则BP=4−2t,
则S=(4−2t)×3=−3t+6;
当t>2时,OP=2t−4,则S=×3(2t−4),即S=3t−6.【点睛】本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.20、(1)﹣2x2+300x﹣8800;(2)若每个月的利润为2250元,定价应为65元.【解析】
(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100-2(x-60)]件,根据销售利润=每件的利润×销售数量,即可得出结论;(2)由(1)的结论结合每个月的利润为2250元,即可得出关于x的一元二次方程,解之取大于等于60小于等于80的值即可得出结论.【详解】(1)设每件商品的售价为x元(x为正整数),则每个月可卖出[100﹣2(x﹣60)]件,∴每个月的销售利润为(x﹣40)[100﹣2(x﹣60)]=﹣2x2+300x﹣8800;(2)根据题意得:﹣2x2+300x﹣8800=2250,解得:x1=65,x2=85(不合题意,舍去).答:若每个月的利润为2250元,定价应为65元.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据数量关系,列出代数式;(2)找准等量关系,正确列出一元二次方程.21、,,,;【解析】
题中没指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】(1)OD是等腰三角形的底边时,此时P(2.5,4);(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角∆OPC中,CP===3,则P的坐标是(3,4);②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角∆PDM中,PM==3,当P在M的左边时,CP=5-3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4);故P的坐标为:(2.5,4);(3,4);(2,4)或(8,4).故答案为:(2.5,4);(3,4);(2,4)或(8,4)【点睛】本题考查了等腰三角形的性质和勾股定理的运用解答,注意正确地进行分类,考虑到所有可能的情况是解题的关键.22、(1)t;;;(2)5.【解析】
(1)直接利用P,Q点的运动速度和运动方法进而表示出各部分的长;(2)利用平行四边形的判定方法得出t的值.【详解】由题意可得:,,,故答案为t,,;,当时,四边形APQB是平行四边形,,解得:.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题关键.23、(1)A(4,0),B(0,8);(2)S=﹣4m+16,(0<m<4);(3),理由见解析【解析】试题分析:(1)根据坐标轴上点的特点直接求值,
(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;
②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.试题解析:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);(3)存在,理由如下:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4,∵S△AOB=OA×OB=AB×OP,∴OP=,∴EF最小=OP=.【点睛】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.24、10+【解析】
先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出△ABC是直角三角形,然后可将S四边形ABCD=S△ABC+S△ACD进行求解.【详解】解:在△ACD中,AC⊥CD,AD=2,∠D=30°,∴AC=,∴CD=,在△ABC中,AB2+BC2=42+52=41,AC2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快乐成长小班教育的未来展望计划
- 2025年软考更改后的复习要点试题及答案
- 优化招聘流程的策略与实施计划
- 优化资源配置的年度工作计划
- 为法学概论加分的试题及答案
- 2024年黑龙江建华区公益性岗位招聘笔试真题
- 2024年安徽相山水泥公司招聘笔试真题
- 法学概论考试形式与内容的结合研究试题及答案
- 软件设计师常考技能解析与试题及答案
- 河南省新乡市部分重点中学2025届七下数学期末统考模拟试题含解析
- SWOT分析法很全面课件
- 膀胱造瘘的护理课件
- 基坑工程施工验收记录表
- 消防应急疏散演练人员签到表(标准通用版)
- 微生物实验室病原微生物评估报告
- 陕旅版五年级英语上册句型词汇知识点总结
- 汉字构字的基本原理和识字教学模式分析
- RouterOS介绍
- 十字轴锻造成型工艺及模具设计毕业论文
- 主体结构监理实施细则范本
- 控制性详细规划 - 宁波市规划局
评论
0/150
提交评论