版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏无锡市数学八下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若在实数范围内有意义,则x的取值范围()A.x≥2 B.x≤2C.x>2 D.x<22.如图,点A在反比例函数y=kxx<0的图象上,过点A作x轴、y轴的垂线,垂足分别为点B、C,若AB=1.5,AC=4,则kA.-3 B.-4.5 C.6 D.-63.若分式有意义,则实数的取值范围是()A. B. C. D.4.用四张全等的直角三角形纸片拼成了如图所示的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A. B.C. D.6.某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是()A. B.C. D.7.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A.2005 B.2003 C.﹣2005 D.40108.若直线y=ax+b的图象经过点(1,5),则关于的方程的解为()A. B. C. D.9.小亮在同一直角坐标系内作出了和的图象,方程组的解是()A. B. C. D.10.已知是关于的方程的两个实数根,且满足,则的值为()A.3 B.3或 C.2 D.0或211.计算的结果等于()A. B. C. D.12.已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是()A.7 B.1 C.5 D.4二、填空题(每题4分,共24分)13.若关于的方程有增根,则的值是________.14.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为_____(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.15.已知一组数据5,a,2,,6,8的中位数是4,则a的值是_____________.16.函数y=与y=x-1的图象的交点坐标为(x0,y0),则的值为_____________.17.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.18.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.三、解答题(共78分)19.(8分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.20.(8分)在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)若营员们打算从点B处直接赶往C处,请用方向角B和距离描述点C相对于点B的位置.21.(8分)甲、乙两台机床同时生产一种零件.在连续周中,两台机床每周出次品的数量如下表.甲乙(1)分别计算两组数据的平均数与方差;(2)两台机床出次品的平均数怎样?哪台机床出次品的波动性小?22.(10分)已知:如图,在△ABC中,D是AC上一点,,△BCD的周长是24cm.(1)求△ABC的周长;(2)求△BCD与△ABD的面积比.23.(10分)某工厂车间为了了解工人日均生产能力的情况,随机抽取10名工人进行测试,将获得数据制成如下统计图.(1)求这10名工人的日均生产件数的平均数、众数、中位数;(2)若日均生产件数不低于12件为优秀等级,该工厂车间共有工人120人,估计日均生产能力为“优秀”等级的工人约为多少人?24.(10分)用适当的方法解方程(1)(2)25.(12分)如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,(1)填空:BD=______;(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.26.已知:如图所示,菱形ABCD中,E,F分别是CB,CD上的点,且BE=DF.(1)试说明:AE=AF;(2)若∠B=60°,点E,F分别为BC和CD的中点,试说明:△AEF为等边三角形.
参考答案一、选择题(每题4分,共48分)1、A【解析】
二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.【详解】∵在实数范围内有意义,∴x−2≥0,解得x≥2.故答案选A.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.2、D【解析】
由AB=1.5,AC=4可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.【详解】设A点的坐标为(x,y)由AB=1.5,AC=4可得矩形ABOC的面积=1.5×4=6∴xy又∵函数图像在第二象限故答案选择D.【点睛】本题考查的是反比例函数的几何意义,在反比例函数y=kx图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值3、B【解析】
分式有意义,则,求出x的取值范围即可.【详解】∵分式有意义,∴,解得:,故选B.【点睛】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.4、C【解析】
根据轴对称图形和中心对称图形的概念进行判断即可。【详解】解:根据轴对称图形与中心对称图形概念,看图分析得:它是中心对称图形,但不是轴对称图形.故选C.【点睛】本题考查了轴对称图形和中心对称图形的概念:把一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;一个图形绕着某个点旋转180°,能够和原来的图形重合,则为中心对称图形.5、D【解析】解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是故选D.6、A【解析】
设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.【详解】解:设每人每小时的绿化面积为x平方米,
由题意得,故选:A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7、B【解析】
根据一元二次方程根的定义和根与系数的关系求解则可.设x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-,x1x2=.而α2+3α+β=α2+2α+(α+β),即可求解.【详解】α,β是方程x2+2x−2005=0的两个实数根,则有α+β=−2.α是方程x2+2x−2005=0的根,得α2+2α−2005=0,即:α2+2α=2005.所以α2+3α+β=α2+2α+(α+β)=α2+2α−2=2005−2=2003,故选B.【点睛】此题考查根与系数的关系,一元二次方程的解,解题关键在于掌握运算法则.8、C【解析】
将点(1,5)代入函数解析式,即可得出答案.【详解】∵直线y=ax+b经过点(1,5),∴有5=a+b从而有方程ax+b=5的解为x=1故选C.【点睛】本题考查的是一次函数,比较简单,需要熟练掌握一次函数与一元一次方程的关系并灵活运用.9、B【解析】
由数形结合可得,直线和的交点即为方程组的解,可得答案.【详解】解:由题意得:直线和的交点即为方程组的解,可得图像上两直线的交点为(-2,2),故方程组的解为,故选B.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10、A【解析】
根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.【详解】解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,
∴m+n=-(2b+3),mn=b2,
∵+1=-,
∴+=-1,
∴=-1,
∴=-1,
解得:b=3或-1,
当b=3时,方程为x2+9x+9=0,此方程有解;
当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,
所以b=3,
故选:A.【点睛】本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.11、D【解析】
利用乘法法则计算即可求出值【详解】解:原式=-54,
故选D.【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12、A【解析】分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.故选A.点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(每题4分,共24分)13、.【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘x-2,得
∵方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得.
故答案为:.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.14、90.【解析】
(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可.【详解】(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90°(Ⅱ)构造正方形BCDE,∠AEC即为所求;故答案为90【点睛】本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题15、1【解析】
先确定从小到大排列后a的位置,再根据中位数的定义解答即可.【详解】解:根据题意,a的位置按照从小到大的排列只能是:﹣1,2,a,5,6,8;根据中位数是4,得:,解得:a=1.故答案为:1.【点睛】本题考查的是中位数的定义,属于基本题型,熟知中位数的概念是解题的关键.16、【解析】解,得或.当时,;当时,;所以的值为17、3【解析】
根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.18、【解析】
连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【点睛】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,三、解答题(共78分)19、BC边上的高AD=.【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.【详解】作AD⊥BC于D,由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,解得,CD=1,则BC边上的高AD=.【点睛】考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20、(1)见解析;(2)点C在点B北偏东45°方向上,距离点B的5km处.【解析】
(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;
(2)利用所画图形,进而结合勾股定理得出答案.【详解】(1)根据A(-3,1),B(-2,-3)画出直角坐标系,描出点C(3,2),如图所示:(2)∵BC=5,∴点C在点B北偏东45°方向上,距离点B的5km处.【点睛】此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.21、(1)甲的平均数为:;乙的平均数为:;甲的方差为:;乙的方差为:;(2)两台机床出次品的平均数相同;甲机床出次品的波动性小.【解析】
(1)先分别计算出两组数据的平均数,然后利用方差公式分别计算即可;(2)根据(1)的数据进行比较得出答案即可.【详解】(1)甲的平均数为:;乙的平均数为:;甲的方差为:S2甲==;乙的方差为:S2乙==;(2)由(1)可得两台机床出次品的平均数相同,∵S2甲<S2乙,∴甲机床出次品的波动性小.【点睛】本题主要考查了平均数与方差的运用,熟练掌握相关概念是解题关键.22、(1)36cm;(2)【解析】试题分析:(1)根据相似三角形的周长的比等于相似比进行计算即可;
(2)根据相似三角形的面积的比等于相似比的平方进行计算即可.试题解析:(1)∵,∴∽∴∵的周长是cm∴的周长是(2)∵∽∴∴23、(1)平均数为11,众数为13,中位数为12.(2)优秀等级的工人约为72人.【解析】
(1)根据平均数加工零件总数总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数中出现次数最多的数据,分别进行解答即可得出答案;(2)用样本的平均数估计总体的平均数即可.【详解】(1)由统计图可得,平均数为:(件),出现了4次,出现的次数最多,众数是件,把这些数从小到大排列为:,,,,,,,,,,最中间的数是第5、6个数的平均数,则中位数是(件);(2)(人)答:优秀等级的工人约为72人.【点睛】本题考查统计量的选择,平均数、中位数和众数,解题的关键是明确题意,找出所求问题需要的条件.24、见详解.【解析】
(1)把x+1看成一个整体,利用直接开平方法求解即可.(2)先把它化成一般式,再利用公式法求解即可.【详解】解:(1)X+1=X=-1(2)∵a=2,b=-5,c=-1.∴=b2-4ac=(-5)2-42(-1)=25+8=33>0.∴x===.【点睛】本题考查了一元二次方程的解法,灵活运用一元二次方程的解法是解题的关键.25、(1)BD=2(2)(3)120°30°【解析】.分析:(1)根据勾股定理计算即可;(2)连接AP,当AP与PE在一条线上时,PE+PC最小,利用勾股定理求出最小值;(3)分两种情况考虑:①当E在BC延长线上时,如图2所示,△PCE为等腰三角形,则CP=CE;②当E在BC上,如图3所示,△PCE是等腰三角形,则PE=CE,分别求出∠PEC的度数即可.详解:(1)BD==2;(2)如图1所示:当AP与PE在一条线上时,PE+PC最小,∵AB=,BE=t,∴PE+PC的最小值为,(3)分两种情况考虑:①当点E在BC的延长线上时,如图2所示,△PCE是等腰三角形,则CP=CE,∴∠CPE=∠CEP,∴∠BCP=∠CPE+∠CEP=2∠CEP,∵在正方形ABCD中,∠ABC=90°,∴∠PBA=∠PBC=45°,在△ABP和△CBP中,,∴△ABP≌△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030细胞治疗药物研发进展及市场准入评估分析报告
- 2025年养老院护理与服务工作手册
- 阿克苏小学生课件培训班
- 消防栓培训课件
- 2026年互联网巨头未来领袖群面网络技术题
- 2026年研究生入学考试英语阅读理解专项题库
- 2026年财务分析师专业实务题库
- 2025年医院感染防控与控制手册
- 消防搜救培训课件
- 2026年高级英语翻译专业资格模拟题
- 邮政服务操作流程与规范(标准版)
- 2025年年轻人生活方式洞察报告-海惟智库
- 2026昆山钞票纸业有限公司校园招聘15人备考题库及1套完整答案详解
- 2026年重庆市江津区社区专职人员招聘(642人)考试参考题库及答案解析
- 统编版(2024)七年级上册道德与法治期末复习必背知识点考点清单
- 新华资产招聘笔试题库2026
- 造口常用护理用品介绍
- 小米销售新人培训
- (新教材)2025年秋期部编人教版二年级上册语文第七单元复习课件
- 银行安全保卫基础知识考试试题及答案
- 明框玻璃幕墙施工方案
评论
0/150
提交评论