




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳外国语学校2025届八年级数学第二学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75° B.45° C.60° D.15°2.在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,1,6,1.则这组数据的中位数是()A.5B.6C.7D.13.不能被()整除.A.80 B.81 C.82 D.834.如图,点在反比例函数,的图像上,点在反比例函数的图像上,轴于点.且,则的值为()A.-3 B.-6 C.2 D.65.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A.1 B.b+1C.2a D.1-2a6.在以x为自变量,y为函数的关系式y=5πx中,常量为()A.5 B.π C.5π D.πx7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定8.如果一个多边形的内角和等于720°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形9.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,1010.每千克m元的糖果x千克与每千克n元的糖果y千克混合成杂拌糖,则这种杂拌糖每千克的价格为()A.元 B.元 C.元 D.元二、填空题(每小题3分,共24分)11.已知一个多边形的每一个外角都等于,则这个多边形的边数是.12.若一个正多边形的每一个外角都是,则这个正多边形的边数为__________.13.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是.14.在平行四边形ABCD中,,则的度数是______°.15.小玲在一次班会中参加知识抢答活动,现有语文题道,数学题道,综合题道,她从中随机抽取道,抽中数学题的概率是_________.16.已知一元二次方程,则根的判别式△=____________.17.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.18.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__________.三、解答题(共66分)19.(10分)计算:(4+)(4﹣)20.(6分)如图,一次函数的图象与反比例函数的图象交于第二、四象限的、两点,与、轴分别交于、两点,过点作轴于点,连接,且的面积为3,作点关于轴对称点.(1)求一次函数和反比例函数的解析式;(2)连接、,求的面积.21.(6分)在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?22.(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行次分投篮测试,一人每次投个球,下图记录的是这两名同学次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;姓名平均数众数方差王亮李刚(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.23.(8分)数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度℃时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到℃时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至℃时,制冷再次停止,…,按照以上方式循环进行.同学们记录内9个时间点冷柜中的温度(℃)随时间变化情况,制成下表:时间…4810162021222324…温度/℃……(1)如图,在直角坐标系中,描出上表数据对应的点,并画出当时温度随时间变化的函数图象;(2)通过图表分析发现,冷柜中的温度是时间的函数.①当时,写出符合表中数据的函数解析式;②当时,写出符合表中数据的函数解析式;(3)当前冷柜的温度℃时,冷柜继续工作36分钟,此时冷柜中的温度是多少?24.(8分)甲、乙两名射击运动员最近5次射击的成绩如下(单位:环):甲:7、8、2、8、1.乙:1、7、5、8、2.(1)甲运动员这5次射击成绩的中位数和众数分别是多少?(2)求乙运动员这5次射击成绩的平均数和方差.25.(10分)已知一次函数的图象经过点和.(1)求该函数图像与x轴的交点坐标;(2)判断点是否在该函数图像上.26.(10分)如图,等腰直角三角形AEF的顶点E在等腰直角三角形ABC的边BC上.AB的延长线交EF于D点,其中∠AEF=∠ABC=90°.(1)求证:(2)若E为BC的中点,求的值.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
首先根据题意寻找旋转后的重合点,根据重合点来找到旋转角.【详解】根据题意△ABC是等边三角形可得B点旋转后的点为C旋转角为故选C.【点睛】本题主要考查旋转角的计算,关键在于根据重合点来确定旋转角.2、B【解析】把这数从小到大排列为:4,5,6,1,1,最中间的数是6,则这组数据的中位数是6,故选B.3、D【解析】
先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【点睛】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.4、B【解析】
先根据反比例函数的比例系数k的几何意义,可知S△AOM,S△BOM=||,则S△AOM:S△BOM=3:|k|,再根据同底的两个三角形面积之比等于高之比,得出S△AOM:S△BOM=AM:MB=1:2,则3:|k|=1:2,然后根据反比例函数的图象所在的象限,即可确定k的值.【详解】∵点A在反比例函数y(x>0)的图象上,点B在反比例函数y(x>0)的图象上,AB⊥x轴于点M,∴S△AOM,S△BOM=||,∴S△AOM:S△BOM:||=3:|k|.∵S△AOM:S△BOM=AM:MB=1:2,∴3:|k|=1:2,∴|k|=1.∵反比例函数的图象在第四象限,∴k<0,∴k=﹣1.故选B.【点睛】本题考查了反比例函数y的比例系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积,难度中等,得到3:|k|=1:2,是解题的关键.5、A【解析】试题解析:由数轴可得:a−1<0,a−b<0,则原式=1−a+a−b+b=1.故选A.6、C【解析】
根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.【详解】在以x为自变量,y为函数的关系式y=5πx中,常量为5π,故选:C.【点睛】考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.7、B【解析】
先根据题意判断出一次函数的增减性,再根据x1<x1即可得出结论.【详解】∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x1,∴y1>y1.故选A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、C【解析】试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是1.故选C.考点:多边形内角与外角.9、B【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.10、B【解析】
解:由题意可得杂拌糖总价为mx+ny,总重为x+y千克,那么杂拌糖每千克的价格为元.故选B.二、填空题(每小题3分,共24分)11、5【解析】
∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.12、1【解析】
根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解.【详解】解:这个正多边形的边数:360°÷30°=1,
故答案为:1.【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.13、24【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.14、100°【解析】如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.故答案是:100°.15、【解析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为,
故答案为:.【点睛】本题考查了概率,正确利用概率公式计算是解题的关键.16、0【解析】
根据一元二次方程根的判别式,将本题中的a、b、c带入即可求出答案.【详解】解:∵一元二次方程,整理得:,可得:,∴根的判别式;故答案为0.【点睛】本题考查一元二次方程根的判别式,首先把方程化成一般形式,得出一元二次方程的二次项系数、一次项系数与常数项,再根据根的判别式公式求解,解题中需注意符号问题.17、1.【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.【详解】作PH⊥AB于H,∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,∴PH=PE,∵P是∠BAC的平分线AD上一点,∴∠EAP=30°,∵PE⊥AC,∴∠AEP=90°,∴AE=AP×cos∠EAP=3,∵△FAP面积恰好是△EAP面积的2倍,PH=PE,∴AF=2AE=1,故答案为1.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18、1【解析】
首先根据平均数的定义列出关于a、b的二元一次方程组,再解方程组求得a、b的值,然后求众数即可.3,a,2b,5与a,1,b的平均数都是1.【详解】解:∵两组数据:3,a,2b,5与a,1,b的平均数都是1,∴,解得,若将这两组数据合并为一组数据,按从小到大的顺序排列为3,4,5,1,8,8,8,一共7个数,中间的数是1,所以中位数是1.故答案为1.三、解答题(共66分)19、1.【解析】
根据运算法则一一进行计算.【详解】原式=42﹣()2=16﹣7=1.【点睛】本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.20、(1)一次函数,反比例,(2).【解析】
(1)点C在反比例函数图象上,且△OCD的面积为3,并且图象在二、四象限,可求出的值,确定反比例函数的关系式,再确定点C的坐标,用A、C的坐标用待定系数法可确定一次函数的关系式,(2)利用一次函数的关系式可求出于坐标轴的交点坐标,与反比例函数关系式联立可求出F点坐标,利用对称可求出点E坐标,最后由三角形的面积公式求出结果.【详解】解:(1)∵点C在反比例函数图象上,且△OCD的面积为3,∴,∴,∵反比例函数的图象在二、四象限,∴,∴反比例函数的解析式为,把C代入为:得,,∴C,把A(0,4),C(3,-2)代入一次函数得:,解得:,∴一次函数的解析式为.答:一次函数和反比例函数的解析式分别为:,.(2)一次函数与轴的交点B(2,0).∵点B关于y轴对称点E,∴点E(-2,0),∴BE=2+2=4,一次函数和反比例函数的解析式联立得:,解得:,∴点,∴.答:△EFC的面积为1.【点睛】考查反比例函数的图象和性质、一次函数的图象和性质以及方程组、三角形的面积等知识,理解反比例函数、一次函数图象上点的坐标的特征,是解决问题的关键.21、(1)15、1.7h;(2)当0<≤0.5时,y与x的函数关系式为:y=-50x+25;当0.5<≤1.7时,y与x的函数关系式为:y=50x-25;(3)该海巡船能接受到该信号的时间0.6(h)【解析】试题分析:(1)把A到B、B到C间的距离相加即可得到A、C两个港口间的距离,再求出海巡船的速度,然后根据时间=路程÷速度,计算即可求出a值;(2)分0<x≤0.5和0.5<x≤1.7两段,利用待定系数法求一次函数解析式求解即可;(3)根据函数解析式求出距离为15km时的时间,然后相减即可得解.试题解析:解:(1)由图可知,A、B港口间的距离为25,B、C港口间的距离为60,所以,A、C港口间的距离为:25+60=15km,海巡船的速度为:25÷0.5=50km/h,∴a=15÷50=1.7h.故答案为:15,1.7h;(2)当0<x≤0.5时,设y与x的函数关系式为:y=kx+b,∵函数图象经过点(0,25),(0.5,0),∴,解得:.所以,y=﹣50x+25;当0.5<x≤1.7时,设y与x的函数关系式为:y=mx+n,∵函数图象经过点(0.5,0),(1.7,60),∴,解得:.所以,y=50x﹣25;(3)由﹣50x+25=15,解得x=0.2,由50x﹣25=15,解得x=0.1.所以,该海巡船能接受到该信号的时间为:0.6h.点睛:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量,比较简单,理解题目信息是解题的关键.22、(1)王亮5次投篮的平均数为7,方差为,(2)见解析,(3)见解析.【解析】
(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为王亮每次投篮平均数,再根据方差公式计算王亮的投篮次数的方差;根据众数定义,李刚投篮出现次数最多的成绩即为其众数;(2)方差越小,乘积越稳定.(3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.【详解】解:(1)王亮5次投篮的平均数为:(6+7+8+7+7)÷5=7个,王亮的方差为:.姓名平均数众数方差王亮李刚(2)两人的平均数、众数相同,从方差上看,王亮投篮成绩的方差小于李刚投篮成绩的方差.所以王亮的成绩较稳定.(3)选王亮的理由是成绩较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中数越多.【点睛】此题是一道实际问题,考查的是对平均数,众数,方差的理解与应用,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.23、(1)见详解;(2)①y=;②y=-4x+1;(3)-4°.【解析】
(1)根据表格内容描点、画图、连线即可.(2)①由x·y=-80,即可得出当4≤x<20时,y关于x的函数解析式;②根据点(20,-4)、(21,-8),利用待定系数法求出y关于x的函数解析式,再代入其它点的坐标验证即可.(3)根据表格数据,找出冷柜的工作周期为20分钟,由此即可得出答案.【详解】(1)如图所示:(2)①根据图象可知,图象接近反比例函数图象的一部分,设y=,过点(8,-10),∴k=-80,∴y=(4≤x<20).②根据图象可知,图象接近直线,设y=kx+b,过点(20,-4),(21,-8),∴y=-4x+1.(3)∵因温度的变化,20分钟一个周期,∴36=20+16∴冷柜连续工作36分钟时,在反比例函数变化范围内,故温度为-4°.【点睛】本题主要考查一次函数和反比例的解析式,以及应用.24、(1)中位数和众数分别是3,3;(2)2【解析】
(1)根据中位数和众数的定义可以解答本题;(2)根据平均数和方差的计算方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电商仓库管理流程优化
- 以案释德、以案释法在志愿服务中的心得体会
- 新能源行业的采购制度与流程
- 酒店前台接待资源配备计划
- 儿童心理辅导带教流程与实施细则
- 幼儿园集体备课的指导流程
- 新教师课程开发心得体会
- 镀膜玻璃项目建设投资申请报告
- 中国垃圾分类环卫装备行业市场前景预测及投资价值评估分析报告
- 风干牛肉干项目建议书(立项报告)
- 2024年苏教版三年级下册数学全册教案及教学反思
- 承运商KPI考核管理办法2024年2月定稿
- 2025年中国石油化工行业市场发展前景及发展趋势与投资战略研究报告
- T-ZZB 3669-2024 嵌装滚花铜螺母
- 医务人员廉洁从业培训课件
- 第十八届“地球小博士”全国地理知识科普竞赛题库(附答案)
- 《智慧医院建设指南》
- 新《民法典》知识竞赛题库附答案
- 《食管胃结合部癌》课件
- 驾驶员三级安全教育卡考试试卷(含公司级、部门级、车队级)
- 油藏开发效果评价-洞察分析
评论
0/150
提交评论