2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题含解析_第1页
2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题含解析_第2页
2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题含解析_第3页
2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题含解析_第4页
2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年山西省朔州市怀仁市重点中学高二下数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量的分布列为,则()A.3 B.4 C.5 D.62.若平面四边形ABCD满足,则该四边形一定是()A.正方形 B.矩形 C.菱形 D.直角梯形3.分配名工人去个不同的居民家里检查管道,要求名工人都分配出去,并且每名工人只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A.种 B.种 C.种 D.种4.如图,正方体,则下列四个命题:①点在直线上运动时,直线与直线所成角的大小不变②点在直线上运动时,直线与平面所成角的大小不变③点在直线上运动时,二面角的大小不变④点在直线上运动时,三棱锥的体积不变其中的真命题是()A.①③ B.③④ C.①②④ D.①③④5.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.在复平面内,复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.命题的否定是()A. B.C. D.8.在平面直角坐标系中,曲线(为参数)上的点到直线的距离的最大值为()A. B. C. D.9.已知向量||=,且,则()A. B. C. D.10.从区间上任意选取一个实数,则双曲线的离心率大于的概率为()A. B. C. D.11.曲线在点处的切线的倾斜角为()A.30° B.60° C.45° D.120°12.下列命题错误的是A.若直线平行于平面,则平面内存在直线与平行B.若直线平行于平面,则平面内存在直线与异面C.若直线平行于平面,则平面内存在直线与垂直D.若直线平行于平面,则平面内存在直线与相交二、填空题:本题共4小题,每小题5分,共20分。13.圆锥的母线长是,高是,则其侧面积是________.14.在正方体中,已知为的中点,则异面直线与所成角的余弦值为______.15.学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适合担任四辩手.现要求:如果男生甲入选,则女生乙必须入选.那么不同的组队形式有_________种.16.如图所示的伪代码,最后输出的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程;(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.18.(12分)某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品。如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图。产品质量/毫克频数(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);(2)由以上统计数据完成列联表,能否在犯错误的概率不超过的前提下认为产品包装是否合格与两条自动包装流水线的选择有关?甲流水线乙流水线总计合格品不合格品总计下列临界值表仅供参考:参考公式:,其中.19.(12分)已知曲线y=x3+x-2在点P0处的切线平行于直线4x-y-1=0,且点P0在第三象限,⑴求P0的坐标;⑵若直线,且l也过切点P0,求直线l的方程.20.(12分)已知二次函数的值域为,且,.(Ⅰ)求的解析式;(Ⅱ)若函数在上是减函数,求实数的取值范围.21.(12分)下表为2015年至2018年某百货零售企业的年销售额(单位:万元)与年份代码的对应关系,其中年份代码年份-2014(如:代表年份为2015年)。年份代码1234年销售额105155240300(1)已知与具有线性相关关系,求关于的线性回归方程,并预测2019年该百货零售企业的年销售额;(2)2019年,美国为遏制我国的发展,又祭出“长臂管辖”的霸权行径,单方面发起对我国的贸易战,有不少人对我国经济发展前景表示担忧.此背景下,某调查平台为了解顾客对该百货零售企业的销售额能否持续增长的看法,随机调查了60为男顾客、50位女顾客,得到如下列联表:持乐观态度持不乐观态度总计男顾客451560女顾客302050总计7535110问:能否在犯错误的概率不超过0.05的前提下认为对该百货零售企业的年销售额持续增长所持的态度与性别有关?参考公式及数据:回归直线方程,0.100.050.0250.0100.0052.7063.8415.0246.6357.87922.(10分)设函数.(1)解不等式;(2)若关于的不等式解集是空集,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据方差的定义计算即可.详解:随机变量的分布列为,则则、故选D点睛:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.2、C【解析】试题分析:因为,所以四边形ABCD为平行四边形,又因为,所以BD垂直AC,所以四边形ABCD为菱形.考点:向量在证明菱形当中的应用.点评:在利用向量进行证明时,要注意向量平行与直线平行的区别,向量平行两条直线可能共线也可能平行.3、C【解析】

根据题意,分析可得,必有2名水暖工去同一居民家检查;分两步进行,①先从4名水暖工中抽取2人,②再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,由分步计数原理,计算可得答案.【详解】解:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;

则必有2名水暖工去同一居民家检查,

即要先从4名水暖工中抽取2人,有种方法,

再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有种情况,

由分步计数原理,可得共种不同分配方案,

故选:C.本题考查排列、组合的综合应用,注意一般顺序是先分组(组合),再排列,属于中档题.4、D【解析】

①由与平面的位置关系判断直线与直线所成角的大小变化情况;②考虑与平面所成角的大小,然后判断直线与平面所成角的大小是否不变;③根据以及二面角的定义判断二面角的大小是否不变;④根据线面平行的性质以及三棱锥的体积计算公式判断三棱锥的体积是否不变.【详解】①如下图,连接,因为,所以平面,所以,所以直线与直线所成角的大小不变;②如下图,连接,记到平面的距离为,设正方体棱长为,所以,所以,又因为,所以,所以与平面所成角的正弦值为:,又因为,所以,所以所以与平面所成角的正弦值为:,显然,所以直线与平面所成角的大小在变化;③因为,所以四点共面,又在直线上,所以二面角的大小不变;④因为,平面,平面,所以平面,所以当在上运动时,点到平面的距离不变,所以三棱锥的体积不变.所以真命题有:①③④.故选:D.本题考查空间中点、线、面的位置关系的判断,难度一般.(1)已知直线平行平面,则该直线上任意一点到平面的距离都相等;(2)线面角的计算方法:<1>作出线段的射影,计算出射影长度,利用比值关系即可求解线面角的大小;<2>计算线段在平面外的一个端点到平面的距离,该距离比上线段长度即为线面角的正弦.5、D【解析】

化简复数为的形式,求得复数对应点的坐标,由此判断所在的象限.【详解】,该复数对应的点为,在第四象限.故选D.本小题主要考查复数的运算,考查复数对应点的坐标所在象限.6、A【解析】

先化简复数,然后求其共轭复数,再利用复数的几何意义求解.【详解】因为复数,其共轭复数为,对应的点是,所以位于第一象限.故选:A本题主要考查复数的概念及其几何意义,还考查了理解辨析的能力,属于基础题.7、B【解析】试题分析:全称命题的否定是特称命题,所以:,故选B.考点:1.全称命题;2.特称命题.8、B【解析】

将直线,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【详解】可得:根据点到直线距离公式,可得上的点到直线的距离为本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.9、C【解析】

由平面向量模的运算可得:0,得,求解即可.【详解】因为向量||,所以0,又,所以2,故选C.本题考查了平面向量模的运算,熟记运算性质是关键,属基础题.10、D【解析】分析:求出m的取值范围,利用几何概型的计算公式即可得出.详解:由题意得,,解得,即.故选:D.点睛:几何概型有两个特点:一是无限性;二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11、C【解析】

求导得:在点处的切线斜率即为导数值1.所以倾斜角为45°.故选C.12、D【解析】分析:利用空间中线线、线面间的位置关系求解.详解:A.若直线平行于平面,则平面内存在直线与平行,正确;B.若直线平行于平面,则平面内存在直线与异面,正确;C.若直线平行于平面,则平面内存在直线与垂直,正确,可能异面垂直;D.若直线平行于平面,则平面内存在直线与相交,错误,平行于平面,与平面没有公共点.故选D.点睛:本题主要考查命题的真假判断,涉及线面平行的判定和性质,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

计算出圆锥底面圆的半径,然后利用圆锥的侧面积公式可计算出圆锥的侧面积.【详解】由题意知,圆锥的底面半径为,因此,圆锥的侧面积为,故答案为:.本题考查圆锥的侧面积,解题的关键就是要求出圆锥的母线长和底面圆的半径,利用圆锥的侧面积公式进行计算,考查计算能力,属于中等题.14、【解析】

取中点,连接,根据四边形为平行四边形可得,从而可知所求角为;在中,利用余弦定理可求得,即为所求余弦值.【详解】取中点,连接分别为中点四边形为平行四边形与所成角即为与所成角,即设正方体棱长为,则,,即异面直线与所成角的余弦值为:本题正确结果:本题考查异面直线所成角的求解,关键是能够通过平行关系将异面直线平移为相交直线,转变为相交直线所成角,从而将所求角放入三角形中来求解,属于常考题型.15、【解析】分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.16、21【解析】分析:先根据伪代码执行循环,直到I<8不成立,结束循环输出S.详解:执行循环得结束循环,输出.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);.(2)当时,的最小值为.【解析】分析:(Ⅰ)利用三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式,把极坐标方程化为直角坐标方程;(Ⅱ)求得椭圆上到直线的距离为,可得的最小值,以及此时的的值,从而求得点的坐标.详解:(Ⅰ)由曲线(为参数),曲线的普通方程为:.由曲线,展开可得:,化为:.即:曲线的直角坐标方程为:.(Ⅱ)椭圆上的点到直线的距离为∴当时,的最小值为.点睛:本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.18、(1)210;(2)详见解析.【解析】

(1)先判断中位数在第四组,再根据比例关系得到计算得到答案.(2)完善列联表,计算,与临界值表作比较得到答案.【详解】解:(1)因为前三组的频率之和前四组的频率之和所以中位数在第四组,设为由,解得(2)由乙流水线样本的频率分布直方图可知,合格品的个数为,所以,列联表是:甲流水线乙流水线总计合格品不合格品总计所以的观测值故在犯错误的概率不超过的前提下,不能认为产品的包装是否合格与两条自动包装流水线的选择有关.本题考查了中位数的计算,独立性检验,意在考查学生的计算能力和解决问题的能力.19、(1)(2)【解析】

本试题主要是考查了导数的几何意义,两条直线的位置关系,平行和垂直的运用.以及直线方程的求解的综合运用.首先根据已知条件,利用导数定义,得到点P3的坐标,然后利用,设出方程为x+2y+c=3,根据直线过点P3得到结论.解:(1)由y=x3+x-2,得y′=3x2+1,由已知得3x2+1=2,解之得x=±1.当x=1时,y=3;当x=-1时,y=-2.又∵点P3在第三象限,∴切点P3的坐标为(-1,-2);(2)∵直线l⊥l1,l1的斜率为2,∴直线l的斜率为-1/2,∵l过切点P3,点P3的坐标为(-1,-2)∴直线l的方程为y+2=(x+1)即x+2y+17=3.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)设二次函数的解析式为,根据题意可得关于的方程组,解方程组即可求得的解析式;(Ⅱ)将的解析式代入,并构造函数,根据复合函数单调性的性质,即可得知在上为单调递增函数.根据二次函数的对称性及对数函数定义域要求即可求得的取值范围.【详解】(Ⅰ)设,由题意知.则,解得,所以的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论