




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省漳浦达志中学2024-2025学年数学高二第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若的值域为,则实数的取值范围是()A. B.C. D.2.设集合,,,则中的元素个数为()A. B. C. D.3.已知,,,则()A.0.6 B.0.7 C.0.8 D.0.94.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2 C.3 D.2或5.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.6.已知等比数列的各项均为正数,前项和为,若,则A. B. C. D.7.复数(为虚数单位)的共轭复数是()A. B. C. D.8.已知复数,则()A.4 B.6 C.8 D.109.在等比数列中,若,,则A. B.C. D.10.对变量进行回归分析时,依据得到的4个不同的回归模型画出残差图,则下列模型拟合精度最高的是()A. B.C. D.11.若复数(为虚数单位)是纯虚数,则复数()A. B. C. D.12.如果,那么的值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.参加某项活动的六名人员排成一排合影留念,其中一人为领导人,则甲乙两人均在领导人的同侧的概率为_______.14.高二(1)班有男生18人,女生12人,现用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取的男生人数为____.15.已知随机变量服从正态分布,且,则_______.16.在复数范围内,方程的根为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(且,e为自然对数的底数.)(1)当时,求函数在处的切线方程;(2)若函数只有一个零点,求a的值.18.(12分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.19.(12分)已知函数.(1)求的单调区间;(2)证明:当时,方程在区间上只有一个解;(3)设,其中.若恒成立,求的取值范围.20.(12分)已知命题实数满足(其中),命题方程表示双曲线.(I)若,且为真命题,求实数的取值范围;(Ⅱ)若是的必要不充分条件,求实数的取值范围.21.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取51人,从乙校抽取41人进行分析.通过人数末通过人数总计甲校乙校31总计51(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为,用随机变量X表示A,B,C三人在该大学自主招生中通过的人数,求X的分布列及期望E(X).参考公式:.参考数据:1.141.111.141.1241.111.1141.1112.1622.6153.8414.1245.5346.86911.82822.(10分)已知、为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于.(1)求椭圆的方程;(2)若过点的直线与椭圆交于、两点,若,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】很明显,且应满足当时,类指数函数的函数值不大于一次函数的函数值,即,解得:,即实数的取值范围是.本题选择B选项.点睛:(1)问题中参数值影响变形时,往往要分类讨论,需有明确的标准、全面的考虑;(2)求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.2、C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.3、D【解析】分析:根据随机变量服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得.详解:由题意,
∵随机变量,,
∴故选:D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.4、A【解析】
根据幂函数的定义,求出m的值,代入判断即可.【详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A.本题考查了幂函数的定义,考查常见函数的性质,是一道常规题.5、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.6、C【解析】由得,,解得,从而,故选C.7、B【解析】
根据复数除法运算,化简复数,再根据共轭复数概念得结果【详解】,故的共轭复数.故选B.本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.8、D【解析】
根据复数的模长公式进行计算即可.【详解】z=8+6i,则8﹣6i,则||10,故选:D.本题主要考查复数的模长的计算,根据条件求出是解决本题的关键.9、A【解析】设等比数列的公比为,则,.故选A.10、A【解析】
根据残差的特点,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.即可得到答案.【详解】用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.故选:.本题考查了残差分析,了解残差分析的原理及特点是解决问题的关键,本题属基础题.11、D【解析】
通过复数是纯虚数得到,得到,化简得到答案.【详解】复数(为虚数单位)是纯虚数故答案选D本题考查了复数的计算,属于基础题型.12、D【解析】
由诱导公式,可求得的值,再根据诱导公式化简即可.【详解】根据诱导公式,所以而所以选D本题考查了诱导公式在三角函数式化简中的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
首先求出六名人员排成一排合影留念的总的基本事件的个数,再求出一人为领导人,则甲乙两人均在领导人的同侧的基本事件的个数,利用古典概型的概率公式求解即可.【详解】解:根据题意,六名人员排成一排合影留念的总的基本事件的个数为,一人为领导人,则甲乙两人均在领导人的同侧的基本事件的个数为,甲乙两人均在领导人的同侧的概率为
故答案为:.本题考查古典概型的求解,是基础题.14、3【解析】
根据分层抽样的比例求得.【详解】由分层抽样得抽取男生的人数为5×18故得解.本题考查分层抽样,属于基础题.15、0.01【解析】
根据正态分布的对称性,求得的值.【详解】根据正态分布的对称性有.本小题主要考查正态分布的对称性,属于基础题.16、【解析】
根据复数范围求根公式求解【详解】因为,所以方程的根为故答案为:本题考查复数范围解实系数一元二次方程,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)代入,得,所以,求出,由直线方程的点斜式,即可得到切线方程;(2)分和两种情况,考虑函数的最小值,令最小值等于0,即可得到a的值.【详解】解:(1)当时,,,,∴切线方程为;(2),,令,得,1)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即,因为当时,,所以此方程无解.2)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即()(*),设(),则,令,得,当时,;当时,;所以当时,,所以方程(*)有且只有一解.综上,时函数只有一个零点.本题主要考查在曲线上一点的切线方程的求法,以及利用导数研究含参函数的零点问题,考查学生的运算求解能力,体现了分类讨论的数学思想.18、(1);(2)【解析】
(1)设等差数列的公差为,等比数列的公比为,运用通项公式,可得,进而得到所求通项公式;(2)由(1)求得,运用等差数列和等比数列的求和公式,即可得到数列和.【详解】(1)设等差数列的公差为,等比数列的公比为,因为,可得,所以,又由,所以,所以数列的通项公式为.(2)由题意知,则数列的前项和为.本题主要考查了等差数列和等比数列的通项公式和求和公式的运用,以及数列的分组求和,其中解答中熟记等差、等比数列的通项公式和前n项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)在上单调递减,在区间上单调递增.(2)见解析(3)【解析】分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出函数的导函数,根据函数的单调性,得到函数在的零点个数,求出方程在的解的个数即可;(3)设,,根据函数的单调性求出函数的最小值,,求出的范围即可.详解:(1)由已知.所以,在区间上,函数在上单调递减,在区间上,函数在区间上单调递增.(2)设,.,由(1)知,函数在区间上单调递增.且,.所以,在区间上只有一个零点,方程在区间上只有一个解.(3)设,,定义域为,,令,则,由(2)知,在区间上只有一个零点,是增函数,不妨设的零点为,则,所以,与在区间上的情况如下:-0+所以,函数的最小值为,,由,得,所以.依题意,即,解得,所以,的取值范围为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,应用导数研究函数的零点,应用导数研究恒成立问题,正确求解函数的导函数是解题的关键.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;(Ⅱ)解出命题中的不等式,由是的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围.【详解】(Ⅰ)由得,若,为真时实数t的取值范围是.由表示双曲线,得,即为真时实数的取值范围是.若为真,则真且真,所以实数t的取值范围是(Ⅱ)设,是的必要不充分条件,.当时,,有,解得;当时,,显然,不合题意.∴实数a的取值范围是.本题第(1)问考查复合命题的真假与参数,第(2)问考查充分必要性与参数,一般要结合两条件之间的关系转化为集合间的包含关系,考查转化与化归数学思想,属于中等题.21、(1)填表见解析,有99%的把握认为学生的自主招生通过情况与所在学校有关(2)见解析【解析】
(1)根据题中信息完善列联表,并计算出的观测值,结合临界值表找出犯错误的概率,于此可对题中的结论正误进行判断;(2)列出随机变量的可能取值,利用独立事件的概率乘法公式计算出随机变量在每个可能值处的概率,可列出随机变量的概率分布列,并由此计算出随机变量的数学期望.【详解】(1)列联表如下:通过人数未通过人数总计甲校214151乙校312141总计4151111由算得:,所以有99%的把握认为学生的自主招生通过情况与所在学校有关;(2)设自主招生通过分别记为事件,则.∴随机变量的可能取值为1,1,2,3.,,,.所以随机变量X的分布列为:.本题考查独立性检验的基本思想,考查随机变量分布列及其数学期望的求解,解题时要判断出随机变量所服从的分布列,结合分布列类型利用相关公式计算出相应的概率,考查计算能力,属于中等题.22、(1);(2)或【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于“计数单位”的小学数学数概念与运算的整体化教学研究-以苏教版教材为例
- 107.危重症患者团队决策能力协作考核
- 2024年环境监测全流程质量控制体系考核试卷
- 10.《短视频叙事节奏与情绪引导职业技能考核》
- 承包水果合同(标准版)
- 砖混施工合同(标准版)
- 2024年绥化市北林区劳动就业服务中心招聘公益性岗位真题
- 杭州市萧山区委统战部下属事业单位选调工作人员考试真题2024
- 全市场科技产业策略报告第112期:数字医疗细分领域之医疗社交平台当前现状和未来发展怎么看
- 考点攻克人教版八年级物理上册第6章质量与密度-质量定向训练试题(解析卷)
- 低血糖症-课件
- 木质纤维素的生物分解及其转化技术
- 海康威视磁盘阵列使用说明精.选
- GB/T 7387-1999船用参比电极技术条件
- GB/T 39473-2020北斗卫星导航系统公开服务性能规范
- GB 16808-2008可燃气体报警控制器
- 公司有限空间作业安全专项排查表
- 强度调制机理光纤传感器基本原理课件
- 《当代中国经济》第一章中国经济体制改革
- 《自强不息的人格修养》-课件1
- DB4403-T 54-2020 停车库(场)交通设施建设与管理规范-(高清现行)
评论
0/150
提交评论