




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市2024-2025学年数学高二第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数2.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线3.设有一个回归方程为y=2-2.5x,则变量x增加一个单位时()A.y平均增加2.5个单位 B.y平均增加2个单位C.y平均减少2.5个单位 D.y平均减少2个单位4.对于函数,有下列结论:①在上单调递增,在上单调递减;②在上单调递减,在上单调递增;③的图象关于直线对称;④的图象关于点对称.其中正确的是()A.①③ B.②④ C.②③ D.②③④5.已知函数,若与的图象上分别存在点、,使得、关于直线对称,则实数的取值范围是()A. B. C. D.6.在二项式的展开式中,含的项的系数是().A. B. C. D.7.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.68.已知是定义域为的奇函数,满足.若,则()A. B. C. D.9.已知函数存在零点,且,则实数的取值范围是()A. B.C. D.10.已知的二项展开式中常数项为1120,则实数的值是()A. B.1 C.或1 D.不确定11.函数y=sin2x的图象可能是A. B.C. D.12.已知定义在上的函数,若是奇函数,是偶函数,当时,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是夹角为的两个单位向量,,则___.14.出租车司机从南昌二中新校区到老校区(苏圃路)途中有个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是则这位司机在途中遇到红灯数的期望为____.(用分数表示)15.如图所示,正方体的棱长为1,,为线段,上的动点,过点,,的平面截该正方体的截面记为,则下列命题正确的是________.①当且时,为等腰梯形;②当,分别为,的中点时,几何体的体积为;③当为中点且时,与的交点为,满足;④当且时,的面积.16.展开式中的常数项为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=|x+a|+|x-2|的定义域为实数集R.(1)当a=5时,解关于x的不等式f(x)>9;(2)设关于x的不等式f(x)≤|x-4|的解集为A,若B={x∈R||2x-1|≤3},当A∪B=A时,求实数a的取值范围.18.(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。19.(12分)若二面角的平面角是直角,我们称平面垂直于平面,记作.(1)如图,已知,,,且,求证:;(2)如图,在长方形中,,,将长方形沿对角线翻折,使平面平面,求此时直线与平面所成角的大小.20.(12分)已知函数.(1)若函数是偶函数,求的值;(2)若函数在上,恒成立,求的取值范围.21.(12分)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.(Ⅰ)求乙取胜的概率;(Ⅱ)记比赛局数为X,求X的分布列及数学期望E(X).22.(10分)如图,在三棱锥P-ABC中,,O是AC的中点,,,.(1)证明:平面平面ABC;(2)若,,D是AB的中点,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:讨论函数的性质,可得答案.详解:函数的定义域为,且即函数是奇函数,又在都是单调递增函数,故函数在R上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.2、D【解析】
在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;
在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;
在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;
故选:D.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.3、C【解析】试题分析:根据题意,对于回归方程为,当增加一个单位时,则的平均变化为,故可知平均减少个单位,故选C.考点:线性回归方程的应用.4、C【解析】
将原函数的导数求出来,分析其符号即可得出原函数的单调性,又,故函数的图象关于直线对称【详解】由得令得当时,,原函数为增函数当时,,原函数为减函数,故②正确因为所以函数的图象关于直线对称,故③正确故选:C本题考查的是利用导数研究函数的单调性及函数的对称性,属于中档题.5、A【解析】
先求得关于对称函数,由与图像有公共点来求得实数的取值范围.【详解】设函数上一点为,关于对称点为,将其代入解析式得,即.在同一坐标系下画出和的图像如下图所示,由图可知,其中是的切线.由得,而,只有A选项符合,故选A.本小题主要考查函数关于直线对称函数解析式的求法,考查两个函数有交点问题的求解策略,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.6、C【解析】
利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【详解】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.7、B【解析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B.8、C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.9、D【解析】
令,可得,设,求得导数,构造,求得导数,判断单调性,即可得到的单调性,可得的范围,即可得到所求的范围.【详解】由题意,函数,令,可得,设,则,由的导数为,当时,,则函数递增,且,则在递增,可得,则,故选D.本题主要考查了函数的零点问题解法,注意运用转化思想和参数分离,考查构造函数法,以及运用函数的单调性,考查运算能力,属于中档题.10、C【解析】
列出二项展开式的通项公式,可知当时为常数项,代入通项公式构造方程求得结果.【详解】展开式的通项为:令,解得:,解得:本题正确选项:本题考查根据二项展开式指定项的系数求解参数值的问题,属于基础题.11、D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.12、A【解析】
根据是偶函数判出是函数的对称轴,结合是奇函数可判断出函数是周期为的周期函数,由此求得的值.【详解】由于是偶函数,所以函数的一条对称轴为,由于函数是奇函数,函数图像关于原点对称,故函数是周期为的周期函数,故,故选A.本小题主要考查函数的奇偶性、考查函数的对称性、考查函数的周期性,考查函数值的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先计算得到,再计算,然后计算.【详解】是夹角为的两个单位向量故答案为本题考查了向量的计算和模,属于向量的常考题型,意在考查学生的计算能力.14、【解析】
遇到红灯相互独立且概率相同可知,根据二项分布数学期望求解公式求得结果.【详解】由题意可知,司机在途中遇到红灯数服从于二项分布,即期望本题正确结果:本题考查服从于二项分布的随机变量的数学期望的求解,考查对于二项分布数学期望计算公式的掌握,属于基础题.15、①②【解析】
将①③④三个命题逐一画出图像进行分析,即可判断出真命题,从而得到正确的序号;②利用空间向量求点面距,进而得体积.【详解】①:作图如下所示,过作,交于,截面为即即截面为等腰梯形.故①正确.②:以为原点,、、分别为、、轴,建立空间直角坐标系,则,,,,,设平面的法向量为,则不妨设,则法向量.则点到平面的距离.故②正确.③:延长交的延长线于一点,连接交于点.故③错误④:延长交的延长线于,连接交于,则截面为四边形根据面积比等于相似比的平方得.在中,,边上的高为故④错误故答案为:①②.本题考查了正方体截面有关命题真假性的判断,考查椎体体积计算,考查空间想象能力和逻辑推理能力.对于求体积求高时,往往建立空间直角坐标系,采用法向量的思想进行求解思路比较明确.16、24【解析】分析:由题意,求得二项式的展开式的通项为,即可求解答案.详解:由题意,二项式的展开式的通项为,令,则.点睛:本题主要考查了二项式定理的应用,其中熟记二项展开式的通项公式是解答的关键,着重考查了推理与运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1){x∈R|x<-6或x>3}.(2)[-1,0].【解析】分析:(1)当a=5时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求;(2)由题意可得B⊆A,区间B的端点在集合A中,由此求得a的取值范围.详解:(1)当a=5时,f(x)=|x+5|+|x-2|.①当x≥2时,由f(x)>9,得2x+3>9,解得x>3;②当-5≤x<2时,由f(x)>9,得7>9,此时不等式无解;③当x<-5时,由f(x)>9,得-2x-3>9,解得x<-6.综上所述,当a=5时,关于x的不等式f(x)>9的解集为{x∈R|x<-6或x>3}.(2)∵A∪B=A,∴B⊆A.又B={x||2x-1|≤3}={x∈R|-1≤x≤2},关于x的不等式f(x)≤|x-4|的解集为A,∴当-1≤x≤2时,f(x)≤|x-4|恒成立.由f(x)≤|x-4|得|x+a|≤2.∴当-1≤x≤2时,|x+a|≤2恒成立,即-2-x≤a≤2-x恒成立.∴实数a的取值范围为[-1,0].点睛:本题主要考查绝对值不等式的解法,集合间的包含关系.18、(1)列联表见解析;有的把握认为“身体状况好与爱好运动有关系”;(2)误差值为;(3)数学期望【解析】
(1)根据茎叶图补全列联表,计算可得,从而得到结论;(2)利用平均数公式求得真实值;利用频率直方图估计平均数的方法求得估计值,作差得到结果;(3)可知,利用二项分布数学期望计算公式求得结果.【详解】(1)由茎叶图可得列联表如下:身体状况好身体状况一般总计爱好运动不爱好运动总计有的把握认为“身体状况好与爱好运动有关系”(2)由茎叶图可得:真实值由直方图得:估计值误差值为:(3)从该厂健康指数不低于的员工中任选人,爱好运动的概率为:则数学期望本题考查独立性检验、茎叶图和频率分布直方图的相关知识、二项分布数学期望的计算,涉及到卡方的计算、利用频率分布直方图估计平均数、随机变量服从二项分布的判定等知识,属于中档题.19、(1)证明见解析;(2).【解析】
(1)在内过点作,根据题意得到,进而可得出结论;(2)过点作于点,连接,得到即是直线与平面所成角,根据题中条件,求出,,由余弦定理得到,进而可求出结果.【详解】(1)在内过点作,因为,,且,所以,因为,所以;(2)过点作于点,连接,因为平面平面,所以平面,所以即是直线与平面所成角;又在长方形中,,,所以,;因此,所以,又,由余弦定理可得:,所以,所以,因此直线与平面所成角的大小为.本题主要考查线面垂直的证明,以及求直线与平面所成的角,熟记线面垂直的判定定理,以及几何法求线面角即可,属于常考题型.20、(1);(2)【解析】
(1)利用偶函数的定义判断得解;(2)对x分三种情况讨论,分离参数求最值即得实数k的取值范围.【详解】(1)由题得,由于函数g(x)是偶函数,所以,所以k=2.(2)由题得在上恒成立,当x=0时,不等式显然成立.当,所以在上恒成立,因为函数在上是减函数,所以.当时,所以在上恒成立,因为函数在上是减函数,在上是增函数,所以.综合得实数k的取值范围为.本题主要考查函数的奇偶性的判断,考查函数的单调性的判断和应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(I)316【解析】
(Ⅰ)乙取胜有两种情况一是乙连胜四局,二是第三局到第六局中乙胜三局,第七局乙胜,由互斥事件的概率公式与根据独立事件概率公式能求出乙胜概率;(Ⅱ)由题意得X=4,5,6,7,结合组合知识,利用独立事件概率公式及互斥事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X的数学期望E(X).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方政治制度对移民公民化的影响试题及答案
- 叉车全部考试题库及答案
- 2025年环境政策与地方实施考试题及答案
- 软件设计师考试团队项目展示与试题及答案
- 兔玩网java面试题及答案
- java程序员进bat面试题及答案
- 动画驾驶考试题及答案
- 人大哲学面试题及答案
- 华泰证券java面试题及答案
- 自我反思的抒情作文5篇
- 江苏省南京市2022-2023学年八年级下册期末物理试卷(含答案)
- 《实验室质量控制》课件
- 湖南省长沙市雅礼集团2023-2024学年八年级下学期期末考试物理试卷
- 世界环境日主题课件
- 职业道德与法治 第13课《学会依法维权》第一框课件《依法理性维权》
- 邻近铁路营业线施工安全监测技术规程 (TB 10314-2021)
- 妇科常见病科普知识讲座
- 城市土壤主要类型及特点
- 宾馆财务安全管理制度
- 《康复护理学基础》期末考试复习题库(含答案)
- 宝钢武钢并购重组案例研究
评论
0/150
提交评论