天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题含解析_第1页
天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题含解析_第2页
天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题含解析_第3页
天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题含解析_第4页
天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市静海区2024-2025学年高二数学第二学期期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若是函数的唯一极值点,则实数的取值范围是()A. B. C. D.2.某几何体的三视图如图所示,其中圆的半径均为,则该几何体的体积为()A. B. C. D.3.五个人站成一排,其中甲乙相邻的站法有()A.18种 B.24种 C.48种 D.36种4.的展开式中只有第5项二项式系数最大,则展开式中含项的系数是()A. B. C. D.5.如图,在正方体中,分别是,的中点,则四面体在平面上的正投影是A. B. C. D.6.设n=0π2A.20 B.-20 C.120 D.-1207.函数的极值点所在的区间为()A. B. C. D.8.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. D.9.已知数列为等差数列,且,则的值为A. B.45 C. D.10.如图,在平面直角坐标系中,质点间隔3分钟先后从点,绕原点按逆时针方向作角速度为弧度/分钟的匀速圆周运动,则与的纵坐标之差第4次达到最大值时,运动的时间为()A.37.5分钟 B.40.5分钟 C.49.5分钟 D.52.5分钟11.已知,的线性回归直线方程为,且,之间的一组相关数据如下表所示,则下列说法错误的为A.变量,之间呈现正相关关系 B.可以预测,当时,C. D.由表格数据可知,该回归直线必过点12.已知函数f(x)对任意的实数x均有f(x+2)+f(x)=0,f(0)=3,则f(2022)等于()A.﹣6 B.﹣3 C.0 D.3二、填空题:本题共4小题,每小题5分,共20分。13.北纬圈上有A,B两点,该纬度圈上劣弧长为(R为地球半径),则A,B两点的球面距离为________.14.已知函数,若,则实数的取值范围为__________.15.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.16.已知一组数据,,,的线性回归方程为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)讨论的单调性;(2)若,求证:当时,.18.(12分)随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:组别一二三四五满意度评分[0,2)[2,4)[4,6)[6,8)[8,10]频数510a3216频率0.05b0.37c0.16(1)求表格中的a,b,c的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?19.(12分)已知复数.(1)若是纯虚数,求;(2)若,求.20.(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.21.(12分)如图,在长方体中,、分别是棱,上的点,,(1)求异面直线与所成角的余弦值;(2)证明平面(3)求二面角的正弦值.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)将,的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:由f(x)的导函数形式可以看出ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kx,g′(x)=ex﹣k,需要对k进行分类讨论来确定导函数为0时的根.详解:∵函数的定义域是(0,+∞),∴f′(x)=.x=1是函数f(x)的唯一一个极值点∴x=1是导函数f′(x)=0的唯一根.∴ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kxg′(x)=ex﹣k①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的g(x)的最小值为g(0)=1,g(x)=0无解②k>0时,g′(x)=0有解为:x=lnk0<x<lnk时,g′(x)<0,g(x)单调递减lnk<x时,g′(x)>0,g(x)单调递增∴g(x)的最小值为g(lnk)=k﹣klnk∴k﹣klnk>0∴k<e,由y=ex和y=ex图象,它们切于(1,e),综上所述,k≤e.故答案为:A.点睛:(1)本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析转化ex﹣kx=0在(0,+∞)无变号零点.2、A【解析】该几何体为一棱长为6的正方体掏掉一个棱长为2的小正方体,再放置进去一个半径为1的球,所以体积为.故选A.3、C【解析】

将甲乙看作一个大的元素与其他元素进行排列,再乘即可得出结论.【详解】五个人站成一排,其中甲乙相邻,将甲乙看作一个大的元素与其他3人进行排列,再考虑甲乙顺序为,故共种站法.故选:C.本题考查排列组合的应用,求排列组合常用的方法有:元素优先法、插空法、捆绑法、隔板法、间接法等,解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高,本题属于简单题.4、C【解析】

根据只有第5项系数最大计算出,再计算展开式中含项的系数【详解】只有第5项系数最大,展开式中含项的系数,系数为故答案选C本题考查了二项式定理,意在考查学生的计算能力.5、C【解析】分析:根据正投影的概念判断即可.详解:根据正投影的概念判断选C.选C.点睛:本题考查正投影的概念,需基础题.6、B【解析】

先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。7、A【解析】

求出导函数,然后运用函数零点存在性定理进行验证可得所求区间.【详解】∵,∴,且函数单调递增.又,∴函数在区间内存在唯一的零点,即函数的极值点在区间内.故选A.本题考查函数零点存在性定理的应用,解答本题时要弄清函数的极值点即为导函数的零点,同时还应注意只有在导函数零点左右两侧的函数值变号时,该零点才为极值点,否则导函数的零点就不是极值点.8、B【解析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.9、B【解析】由已知及等差数列性质有,故选B.10、A【解析】

分析:由题意可得:yN=,yM=,计算yM﹣yN=sin,即可得出.详解:由题意可得:yN=,yM=∴yM﹣yN=yM﹣yN=sin,令sin=1,解得:=2kπ+,x=12k+,k=0,1,2,1.∴M与N的纵坐标之差第4次达到最大值时,N运动的时间=1×12+=17.5(分钟).故选A.点睛:本题考查了三角函数的图象与性质、和差公式、数形结合方法,考查了推理能力与计算能力,属于中档题.也查到了三角函数的定义的应用,三角函数的定义指的是单位圆上的点坐标和这一点的旋转角之间的关系.11、C【解析】

A中,根据线性回归直线方程中回归系数0.82>0,判断x,y之间呈正相关关系;B中,利用回归方程计算x=5时的值即可预测结果;C中,计算、,代入回归直线方程求得m的值;D中,由题意知m=1.8时求出、,可得回归直线方程过点(,).【详解】已知线性回归直线方程为0.82x+1.27,0.82>0,所以变量x,y之间呈正相关关系,A正确;计算x=5时,0.82×5+1.27=5.37,即预测当x=5时y=5.37,B正确;(0+1+2+3)=1.5,(0.8+m+3.1+4.3),代入回归直线方程得0.82×1.5+1.27,解得m=1.8,∴C错误;由题意知m=1.8时,1.5,2.5,所以回归直线方程过点(1.5,2.5),D正确.故选C.本题考查了线性回归方程的概念与应用问题,是基础题.12、B【解析】

分析可得,即函数是周期为4的周期函数,据此可得,即可求解,得到答案.【详解】根据题意,函数对任意的实数均有,即,则有,即函数是周期为4的周期函数,则,故选B.本题主要考查了函数的周期的判定及其应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求出北纬圈所在圆的半径,是、两地在北纬圈上对应的圆心角,得到线段的长,设地球的中心为,解三角形求出的大小,利用弧长公式求、这两地的球面距离.【详解】解:北纬圈所在圆的半径为,它们在纬度圈上所对应的劣弧长等于为地球半径),是、两地在北纬圈上对应的圆心角),故,线段,,、这两地的球面距离是,故答案为:.本题考查球的有关经纬度知识,球面距离,弧长公式,考查空间想象能力,逻辑思维能力,属于基础题.14、.【解析】

作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.【详解】作出函数f(x)的图象如图:设f(a)=f(b)=t,则0<t≤,∵a<b,∴a≤1,b>﹣1,则f(a)=ea=t,f(b)=2b﹣1=t,则a=lnt,b=(t+1),则a﹣2b=lnt﹣t﹣1,设g(t)=lnt﹣t﹣1,0<t≤,函数的导数g′(t)=﹣1=,则当0<t≤时g′(t)>0,此时函数g(t)为增函数,∴g(t)≤g()=ln﹣﹣1=﹣﹣2,即实数a﹣2b的取值范围为(﹣∞,﹣﹣2],故答案为:(﹣∞,﹣﹣2].本题主要考查分段函数的应用,涉及函数与方程的关系,利用换元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强.15、4038.【解析】

由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.16、【解析】

样本数据的回方程必经过样本点的中心,该组数据的中心为,代入回归方程,得到关于的方程.【详解】设这组数据的中心为,,,,整理得:.本题考查回归直线方程经过样本点中心,考查统计中简单的数据处理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】分析:(1)依题意,的定义域为,,分类讨论可求的单调性;(2)当时,要证明,即证明,只需证明.设,利用导数研究其性质,即可证明详解:(1)依题意,的定义域为,,(1)当时,,在单调递减;(2)当时,当时,;当时,;所以在单调递减,在单调递增;(3)当时,当时,;当时,;所以在单调递增,在单调递减;综上,当时,在单调递减;当时,在单调递减,在单调递增;当时,在单调递增,在单调递减.(2)当时,要证明,即证明,因为,所以只需证明,只需证明.设,则,设,则,所以当时,;当时,;所以在单调递减,在单调递增;所以,所以当时,;当时,;所以在单调递减,在单调递增;所以,所以当时,.点睛:本小题考查导数与函数的单调性、不等式等基础知识;考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想,分类与整合思想等.18、(1),,;(2)5.88;(3)13.【解析】

(1)由频数分布表,即可求解表格中的的值;(2)由频数分布表,即可估计用户的满意度平分的平均数;(3)从这100名用户中随机抽取25人,由频数分布表能估计满意度平分低于6分的人数.【详解】(1)由频数分布表得,解得,,;(2)估计用户的满意度评分的平均数为:.(3)从这100名用户中随机抽取25人,估计满足一度评分低于6分的人数为:人.本题主要考查了频数分布表的应用,以及平均数、频数的求解,其中解答中熟记频数分布表的性质,合理准确计算是解答的关键,着重考查了推理与计算能力,以及分析问题和解答问题的能力,属于基础题.19、(1);(2)或1-2i.【解析】分析:(1)根据纯虚数的定义得到,解不等式组即得a的值.(2)由题得,解之得a的值,再求.详解:(1)若是纯虚数,则,所以(2)因为,所以,所以或.当时,,当时,.点睛:(1)本题主要考查复数的概念、复数的模和共轭复数,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)复数为纯虚数不要把下面的b≠0漏掉了.20、(1).(2)比三百大的数字有15个.(3).【解析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.21、(1),(2)见解析(3)【解析】方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,,,(1)解:易得,于是所以异面直线与所成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论